2,353,102 research outputs found

    Evolutionary Dynamics and Optimization: Neutral Networks as Model-Landscapes for RNA Secondary-Structure Folding-Landscapes

    Full text link
    We view the folding of RNA-sequences as a map that assigns a pattern of base pairings to each sequence, known as secondary structure. These preimages can be constructed as random graphs (i.e. the neutral networks associated to the structure ss). By interpreting the secondary structure as biological information we can formulate the so called Error Threshold of Shapes as an extension of Eigen's et al. concept of an error threshold in the single peak landscape. Analogue to the approach of Derrida & Peliti for a of the population on the neutral network. On the one hand this model of a single shape landscape allows the derivation of analytical results, on the other hand the concept gives rise to study various scenarios by means of simulations, e.g. the interaction of two different networks. It turns out that the intersection of two sets of compatible sequences (with respect to the pair of secondary structures) plays a key role in the search for ''fitter'' secondary structures.Comment: 20 pages, uuencoded compressed postscript-file, Proc. of ECAL '95 conference, to appear., email: chris @ imb-jena.d

    RNA secondary structure design

    Get PDF
    We consider the inverse-folding problem for RNA secondary structures: for a given (pseudo-knot-free) secondary structure find a sequence that has that structure as its ground state. If such a sequence exists, the structure is called designable. We implemented a branch-and-bound algorithm that is able to do an exhaustive search within the sequence space, i.e., gives an exact answer whether such a sequence exists. The bound required by the branch-and-bound algorithm are calculated by a dynamic programming algorithm. We consider different alphabet sizes and an ensemble of random structures, which we want to design. We find that for two letters almost none of these structures are designable. The designability improves for the three-letter case, but still a significant fraction of structures is undesignable. This changes when we look at the natural four-letter case with two pairs of complementary bases: undesignable structures are the exception, although they still exist. Finally, we also study the relation between designability and the algorithmic complexity of the branch-and-bound algorithm. Within the ensemble of structures, a high average degree of undesignability is correlated to a long time to prove that a given structure is (un-)designable. In the four-letter case, where the designability is high everywhere, the algorithmic complexity is highest in the region of naturally occurring RNA.Comment: 11 pages, 10 figure

    Protein secondary structure: Entropy, correlations and prediction

    Get PDF
    Is protein secondary structure primarily determined by local interactions between residues closely spaced along the amino acid backbone, or by non-local tertiary interactions? To answer this question we have measured the entropy densities of primary structure and secondary structure sequences, and the local inter-sequence mutual information density. We find that the important inter-sequence interactions are short ranged, that correlations between neighboring amino acids are essentially uninformative, and that only 1/4 of the total information needed to determine the secondary structure is available from local inter-sequence correlations. Since the remaining information must come from non-local interactions, this observation supports the view that the majority of most proteins fold via a cooperative process where secondary and tertiary structure form concurrently. To provide a more direct comparison to existing secondary structure prediction methods, we construct a simple hidden Markov model (HMM) of the sequences. This HMM achieves a prediction accuracy comparable to other single sequence secondary structure prediction algorithms, and can extract almost all of the inter-sequence mutual information. This suggests that these algorithms are almost optimal, and that we should not expect a dramatic improvement in prediction accuracy. However, local correlations between secondary and primary structure are probably of under-appreciated importance in many tertiary structure prediction methods, such as threading.Comment: 8 pages, 5 figure

    Streamwise vortex structure in plane mixing layers

    Get PDF
    The development of three-dimensional motions in a plane mixing layer was investigated experimentally. It is shown that superimposed on the primary, spanwise vortex structure there is a secondary, steamwise vortex structure. Three aspects of this secondary structure were studied. First, the spanwise vortex instability that generates the secondary structure was characterized by measurements of the critical Reynolds number and the spanwise wavelength at several flow conditions. While the critical Reynolds number was found to depend on the velocity ratio, density ratio and initial shear-layer-profile shape, the mean normalized wavelength is independent of these parameters. Secondly, flow visualization in water was used to obtain cross-sectional views of the secondary structure associated with the streamwise counter-rotating vortices. A model is proposed in which those vortices are part of a single vortex line winding back and forth between the high-speed side of a primary vortex and the low-speed side of the following one. Finally, the effect of the secondary structure on the spanwise concentration field was measured in a helium-nitrogen mixing layer. The spatial organization of the secondary structure produces a well-defined spanwise entrainment pattern in which fluid from each stream is preferentially entrained at different spanwise locations. These measurements show that the spanwise scale of the secondary structure increases with downstream distance

    The secondary structure of RNA under tension

    Full text link
    We study the force-induced unfolding of random disordered RNA or single-stranded DNA polymers. The system undergoes a second order phase transition from a collapsed globular phase at low forces to an extensive necklace phase with a macroscopic end-to-end distance at high forces. At low temperatures, the sequence inhomogeneities modify the critical behaviour. We provide numerical evidence for the universality of the critical exponents which, by extrapolation of the scaling laws to zero force, contain useful information on the ground state (f=0) properties. This provides a good method for quantitative studies of scaling exponents characterizing the collapsed globule. In order to get rid of the blurring effect of thermal fluctuations we restrict ourselves to the groundstate at fixed external force. We analyze the statistics of rearrangements, in particular below the critical force, and point out its implications for force-extension experiments on single molecules.Comment: to be published in Europhys. J.

    Expected degree for RNA secondary structure networks

    Full text link
    Consider the network of all secondary structures of a given RNA sequence, where nodes are connected when the corresponding structures have base pair distance one. The expected degree of the network is the average number of neighbors, where average may be computed with respect to the either the uniform or Boltzmann probability. Here we describe the first algorithm, RNAexpNumNbors, that can compute the expected number of neighbors, or expected network degree, of an input sequence. For RNA sequences from the Rfam database, the expected degree is significantly less than the CMFE structure, defined to have minimum free energy over all structures consistent with the Rfam consensus structure. The expected degree of structural RNAs, such as purine riboswitches, paradoxically appears to be smaller than that of random RNA, yet the difference between the degree of the MFE structure and the expected degree is larger than that of random RNA. Expected degree does not seem to correlate with standard structural diversity measures of RNA, such as positional entropy, ensemble defect, etc. The program {\tt RNAexpNumNbors} is written in C, runs in cubic time and quadratic space, and is publicly available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors.Comment: 25 pages, 5 figures, 5 table

    Internal ribosomal entry site lacks secondary structure

    Get PDF
    The search for mechanisms of translational regulation has yielded many experimentally identified internal ribosome entry sites (IRES). Because of the lack of sequence similarity among the experimentally IRESs, it is widely assumed that IRESs posses stable secondary structure allowing them to interact with the components of the translation machinery. Contrary to this view, here we show that IRES activity in nine yeast IRESs, mapped to 60 nt immediately upstream of the initiation AUG, is strongly associated with the lack of secondary structure of IRESs. Furthermore, the reverse complements of these IRESs, with their secondary structure more stable than those of the IRESs, exhibit little IRES activity. The generality of this association is exemplified by the observation that, in the natural _vpu-env_ bicistronic mRNA in HIV-1, the mRNA segment (60 nt) immediately upstream of the initiation AUG of _env_ has the weakest secondary structure among all dominant HIV-1 mRNA species. These results suggest a unified model of alternative translation initiation
    • …
    corecore