108 research outputs found

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Employing multi-modal sensors for personalised smart home health monitoring.

    Get PDF
    Smart home systems are employed worldwide for a variety of automated monitoring tasks. FITsense is a system that performs personalised smart home health monitoring using sensor data. In this thesis, we expand upon this system by identifying the limits of health monitoring using simple IoT sensors, and establishing deployable solutions for new rich sensing technologies. The FITsense system collects data from FitHomes and generates behavioural insights for health monitoring. To allow the system to expand to arbitrary home layouts, sensing applications must be delivered while relying on sparse "ground truth" data. An enhanced data representation was tested for improving activity recognition performance by encoding observed temporal dependencies. Experiments showed an improvement in activity recognition accuracy over baseline data representations with standard classifiers. Channel State Information (CSI) was chosen as our rich sensing technology for its ambient nature and potential deployability. We developed a novel Python toolkit, called CSIKit, to handle various CSI software implementations, including automatic detection for off-the-shelf CSI formats. Previous researchers proposed a method to address AGC effects on COTS CSI hardware, which we tested and found to improve correlation with a baseline without AGC. This implementation was included in the public release of CSIKit. Two sensing applications were delivered using CSIKit to demonstrate its functionality. Our statistical approach to motion detection with CSI data showed a 32% increase in accuracy over an infrared sensor-based solution using data from 2 unique environments. We also demonstrated the first CSI activity recognition application on a Raspberry Pi 4, which achieved an accuracy of 92% with 11 activity classes. An application was then trained to support movement detection using data from all COTS CSI hardware. This was combined with our signal divider implementation to compare CSI wireless and sensing performance characteristics. The IWL5300 exhibited the most consistent wireless performance, while the ESP32 was found to produce viable CSI data for sensing applications. This establishes the ESP32 as a low-cost high-value hardware solution for CSI sensing. To complete this work, an in-home study was performed using real-world sensor data. An ESP32-based CSI sensor was developed to be integrated into our IoT network. This sensor was tested in a FitHome environment to identify how the data from our existing simple sensors could aid sensor development. We performed an experiment to demonstrate that annotations for CSI data could be gathered with infrared motion sensors. Results showed that our new CSI sensor collected real-world data of similar utility to that collected manually in a controlled environment

    Design of software defined radio based testbed for smart healthcare

    Get PDF
    Human Activity Recognition (HAR) help to sense the environment of a human being with an objective to serve a diverse range of human-centric applications in health care, smart-homes and the military. The prevailing detection techniques use ambient sensors, cameras and wearable devices that primarily require strenuous deployment overheads and raise privacy concern as well. Monitoring human activities of daily living is a possible way of describing the functional and health status of a human. Therefore, human activity recognition (HAR) is one of genuine components in personalized life-care and healthcare systems, especially for the elderly and disabled. Recent advances in wireless technologies have demonstrated that a person’s activity can modulate the wireless signal, and enable the transfer of information from a human to an RF transceiver, even when the person does not carry a transmitter. The aim of this PhD project is to design a novel, non-invasive, easily deployable, flexible and scalable test-bed for detecting human daily activities that can help to assess the general physical health of a person based on Software Defined Radios (SDRs). The proposed system also allows us to modify the power level of transceiver model, change the operating frequency, use self-design antennas and change the number of subcarriers in real-time. The results obtained using USRP based wireless sensing for activities of daily living are highly accurate as compared to off-the-shelf wireless devices each time when activities and experiments are performed. This system leverage on the channel state information (CSI) to record the minute movement caused by breathing over orthogonal frequency division multiplexing (OFDM) in multiple sub-carriers. The proposed system combines subject count and activities performed in different classes together, resulting in simultaneous identification of occupancy count and activities performed. Different machine learning algorithms namely K-Nearest Neighbour, Decision Tree, Discriminant Analysis, and Naıve Bayes are used to evaluate the overall performance of the test-bed and achieved a high accuracy. The K-nearest neighbour outperformed all classifiers, providing an accuracy of 89.73% for activity detection and 91.01% for breathing monitoring. A deep learning convolutional neural network is engineered and trained on the CSI data to differentiate multi-subject activities. The proposed system can potentially fulfill the needs of future in-home health activity monitoring and is a viable alternative for monitoring public health and well being

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Enabling Technologies for Cognitive Optical Networks

    Get PDF

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    WiFi Sensing at the Edge Towards Scalable On-Device Wireless Sensing Systems

    Get PDF
    WiFi sensing offers a powerful method for tracking physical activities using the radio-frequency signals already found throughout our homes and offices. This novel sensing modality offers continuous and non-intrusive activity tracking since sensing can be performed (i) without requiring wearable sensors, (ii) outside the line-of-sight, and even (iii) through the wall. Furthermore, WiFi has become a ubiquitous technology in our computers, our smartphones, and even in low-cost Internet of Things devices. In this work, we consider how the ubiquity of these low-cost WiFi devices offer an unparalleled opportunity for improving the scalability of wireless sensing systems. Thus far, WiFi sensing research assumes costly offline computing resources and hardware for training machine learning models and for performing model inference. To improve the scalability of WiFi sensing systems, this dissertation introduces techniques for improving machine learning at the edge by thoroughly surveying and evaluating signal preprocessing and edge machine learning techniques. Additionally, we introduce the use of federated learning for collaboratively training machine learning models with WiFi data only available on edge devices. We then consider privacy and security concerns of WiFi sensing by demonstrating possible adversarial surveillance attacks. To combat these attacks, we propose a method for leveraging spatially distributed antennas to prevent eavesdroppers from performing adversarial surveillance while still enabling and even improving the sensing capabilities of allowed WiFi sensing devices within our environments. The overall goal throughout this work is to demonstrate that WiFi sensing can become a ubiquitous and secure sensing option through the use of on-device computation on low-cost edge devices

    Versatility Of Low-Power Wide-Area Network Applications

    Get PDF
    Low-Power Wide-Area Network (LPWAN) is regarded as the leading communication technology for wide-area Internet-of-Things (IoT) applications. It offers low-power, long-range, and low-cost communication. With different communication requirements for varying IoT applications, many competing LPWAN technologies operating in both licensed (e.g., NB-IoT, LTE-M, and 5G) and unlicensed (e.g., LoRa and SigFox) bands have emerged. LPWANs are designed to support applications with low-power and low data rate operations. They are not well-designed to host applications that involve high mobility, high traffic, or real-time communication (e.g., volcano monitoring and control applications).With the increasing number of mobile devices in many IoT domains (e.g., agricultural IoT and smart city), mobility support is not well-addressed in LPWAN. Cellular-based/licensed LPWAN relies on the wired infrastructure to enable mobility. On the other hand, most unlicensed LPWANs operate on the crowded ISM band or are required to duty cycle, making handling mobility a challenge. In this dissertation, we first identify the key opportunities of LPWAN, highlight the challenges, and show potential directions for future research. We then enable the versatility of LPWAN applications first by enabling applications involving mobility over LPWAN. Specifically, we propose to handle mobility in LPWAN over white space considering Sensor Network Over White Space (SNOW). SNOW is a highly scalable and energy-efficient LPWAN operating over the TV white spaces. TV white spaces are the allocated but locally unused available TV channels (54 - 698 MHz in the US). We proposed a dynamic Carrier Frequency Offset (CFO) estimation and compensation technique that considers the impact of the Doppler shift due to mobility. Also, we design energy-efficient and fast BS discovery and association approaches. Finally, we demonstrate the feasibility of our approach through experiments in different deployments. Finally, we present a collision detection and recovery technique called RnR (Reverse & Replace Decoding) that applies to LPWANs. Additionally, we discuss future work to enable handling burst transmission over LPWAN and localization in mobile LPWAN

    Contactless WiFi Sensing and Monitoring for Future Healthcare:Emerging Trends, Challenges and Opportunities

    Get PDF
    WiFi sensing has recently received significant interest from academics, industry, healthcare professionals and other caregivers (including family members) as a potential mechanism to monitor our aging population at distance, without deploying devices on users bodies. In particular, these methods have gained significant interest to efficiently detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems stems from its practical deployments in indoor settings and compliance from monitored persons, unlike other sensors such as wearables, camera-based, and acoustic-based solutions. This paper reviews state-of-the-art research on collecting and analysing channel state information, extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, untapped areas, and related trends.This work aims to provide an overarching view in understanding the technology and discusses its uses-cases from a perspective that considers hardware, advanced signal processing, and data acquisition
    • …
    corecore