195 research outputs found

    Routing-Verification-as-a-Service (RVaaS): Trustworthy Routing Despite Insecure Providers

    Full text link
    Computer networks today typically do not provide any mechanisms to the users to learn, in a reliable manner, which paths have (and have not) been taken by their packets. Rather, it seems inevitable that as soon as a packet leaves the network card, the user is forced to trust the network provider to forward the packets as expected or agreed upon. This can be undesirable, especially in the light of today's trend toward more programmable networks: after a successful cyber attack on the network management system or Software-Defined Network (SDN) control plane, an adversary in principle has complete control over the network. This paper presents a low-cost and efficient solution to detect misbehaviors and ensure trustworthy routing over untrusted or insecure providers, in particular providers whose management system or control plane has been compromised (e.g., using a cyber attack). We propose Routing-Verification-as-a-Service (RVaaS): RVaaS offers clients a flexible interface to query information relevant to their traffic, while respecting the autonomy of the network provider. RVaaS leverages key features of OpenFlow-based SDNs to combine (passive and active) configuration monitoring, logical data plane verification and actual in-band tests, in a novel manner

    Moving target defense for securing smart grid communications: Architectural design, implementation and evaluation

    Get PDF
    Supervisory Control And Data Acquisition (SCADA) communications are often subjected to various kinds of sophisticated cyber-attacks which can have a serious impact on the Critical Infrastructure such as the power grid. Most of the time, the success of the attack is based on the static characteristics of the system, thereby enabling an easier profiling of the target system(s) by the adversary and consequently exploiting their limited resources. In this thesis, a novel approach to mitigate such static vulnerabilities is proposed by implementing a Moving Target Defense (MTD) strategy in a power grid SCADA environment, which leverages the existing communication network with an end-to-end IP Hopping technique among the trusted peer devices. This offers a proactive L3 layer network defense, minimizing IP-specific threats and thwarting worm propagation, APTs, etc., which utilize the cyber kill chain for attacking the system through the SCADA network. The main contribution of this thesis is to show how MTD concepts provide proactive defense against targeted cyber-attacks, and a dynamic attack surface to adversaries without compromising the availability of a SCADA system. Specifically, the thesis presents a brief overview of the different type of MTD designs, the proposed MTD architecture and its implementation with IP hopping technique over a Control Center–Substation network link along with a 3-way handshake protocol for synchronization on the Iowa State’s Power Cyber testbed. The thesis further investigates the delay and throughput characteristics of the entire system with and without the MTD to choose the best hopping rate for the given link. It also includes additional contributions for making the testbed scenarios more realistic to real world scenarios with multi-hop, multi-path WAN. Using that and studying a specific attack model, the thesis analyses the best ranges of IP address for different hopping rate and different number of interfaces. Finally, the thesis describes two case studies to explore and identify potential weaknesses of the proposed mechanism, and also experimentally validate the proposed mitigation alterations to resolve the discovered vulnerabilities. As part of future work, we plan to extend this work by optimizing the MTD algorithm to be more resilient by incorporating other techniques like network port mutation to further increase the attack complexity and cost

    Pseudo-Network Drivers and Virtual Networks

    Get PDF
    Many operating systems have long had pseudo-teletypes, inter-process communication channels that provide terminal semantics on one end, and a smart server program on the other. We describe an analogous concept, pseudo-network drivers. One end of the driver appears to be a real network device, with the appropriate interface and semantics; data written to it goes to a program, however, rather than to a physical medium. Using this and some auxiliary mechanisms, we present a variety of applications, including system test, network monitoring, dial-up TCP/IP, and ways to both improve and subvert network security. Most notably, we show how pseudo-network devices can be used to create virtual networks and to provide encrypted communications capability. We describe two implementations, one using a conventional driver for socket-based systems, and one using stream pipes for System V

    Recent Trends in Software-Defined Networking: A Bibliometric Review

    Get PDF
    Software-Defined Networking is referred to as the next big thing in the field of networking. Legacy networks contain various components such as switches, routers, etc. with a variety of complex protocols. A network administrator is responsible for configuring all these various components. Apart from complex network management, network security is also a persistent issue in the field of networking. SDN promises simplicity in network management while also dramatically improving the security of networks. This paper gives an analysis of the current trends in in SDN as well as Security challenges with SDN. A bibliometric review on SDN has also been outlined in this paper. We have also mentioned some of the challenges posed by the SDN architecture and also some of the solutions to combat the

    A review of solutions for SDN-Exclusive security issues

    Get PDF
    Software Defined Networking is a paradigm still in its emergent stages in the realm of production-scale networks. Centralisation of network control introduces a new level of flexibility for network administrators and programmers. Security is a huge factor contributing to consumer resistance to implementation of SDN architecture. Without addressing the issues inherent from SDNs centralised nature, the benefits in performance and network configurative flexibility cannot be harnessed. This paper explores key threats posed to SDN environments and comparatively analyses some of the mechanisms proposed as mitigations against these threats – it also provides some insight into the future works which would enable a securer SDN architecture.

    International Cryptography Regulation and the Global Information Economy

    Get PDF
    With the meteoric rise of the Internet and e-commerce in the 1990s came great attention to the problems and opportunities associated with cryptography. Throughout that decade, the United States and many foreign countries debated and experimented with various forms of cryptography regulation, and attempts were made at international harmonization. Since then, however, policy-making activity around cryptography has slowed, if not halted altogether, leaving individuals and companies to face a bewildering array of regulations—or, in many cases, to face regulations that are extraordinarily unclear and haphazardly applied. This Note seeks to introduce the reader to the issue of international cryptography regulation by focusing on laws in a select group of countries, including the two largest global economies—China and the United State
    • …
    corecore