4 research outputs found

    SDN-controlled and Orchestrated OPSquare DCN Enabling Automatic Network Slicing with Differentiated QoS Provisioning

    Get PDF
    In this work, we propose and experimentally assess the automatic and flexible NSs configurations of optical OPSquare DCN controlled and orchestrated by an extended SDN control plane for multi-tenant applications with differentiated QoS provisioning. Optical Flow Control (OFC) protocol has been developed to prevent packet losses at switch sides caused by packet contentions.Based on the collected resource topology of data plane, the optical network slices can be dynamically provisioned and automatically reconfigured by the SDN control plane. Meanwhile, experimental results validate that the priority assignment of application flows supplies dynamic QoS performance to various slices running applications with specific requirements in terms of packet loss and transmission latency. In addition, the capability of exposing traffic statistics information of data plane to SDN control plane enables the implementation of load balancing algorithms further improving the network performance with high QoS. No packet loss and less than 4.8 us server-to-server latency can be guaranteed for the sliced network with highest priority at a load of 0.5

    SDN-based control and orchestration of optical data centre networks

    Get PDF
    The use of the Internet is linked with the constant technological change that the world is suffering nowadays, which is responsible for the important need to update the infrastructure of current data centers. The amount of traffic that is moving in data centers has increased significantly in the past few years, so a better alternative for them should be studied, as the use of Ethernet or InfiniBand is no longer appropriate in terms of scalability and flexibility. Optical technology is one possible solution for it, as it provides a big bandwidth, low latency and an overall better performance. However, the physical resources that form a data center should be managed in an efficient way. To perform an optimum use of them, the new concept of virtual data center appeared, where the orchestration of the resources is done with the aim of offering to a cloud infrastructure to a third party. In this context, OpenStack has become one of the most popular open source platforms when building public or private clouds, based on three important aspects: compute, storage and network. But the flexibility of these cloud infrastructures is attached to being scalable or dynamic. In this case, Software Definiton Network (SDN) and Network Function Virtualization (NFV) play an important role in data centers, as they allow to build complex network capabilities on demand. In this project, we experimentally demonstrate the programmable OPsquare data center network empowered by an SDN control plane. The implementation is based on monitoring the real-time statistics of the network, so some actions such as network slices provisioning and reconfiguration, packet priority class assignment or dynamic load balancing operations can be done in order to achieve the required Quality of Service level. This project is a cooperation between TU/e (Eindhoven University of Technology, The Netherlands) and UPC (Universitat Politècnica de Catalunya, Barcelona)

    Informe mensual d’articles indexats a Scopus. Setembre i octubre 2020

    Get PDF
    Informe mensual d'articles publicats a Scopus al Campus Baix Llobregat. Base de dades Scopus. Setembre i octubre 2020.Postprint (published version

    SDN-controlled and orchestrated OPSquare DCN enabling automatic network slicing with differentiated QoS provisioning

    No full text
    \u3cp\u3eOptical switching techniques have the potential to enable the optical data center network (DCN) interconnections providing high capacity and fast switching capabilities, overcoming thus the bandwidth and latency bottleneck of present electrical switch-based multi-tiered DCNs. The rapid growth of multi-tenant applications with heterogeneous traffic require specialized quality of service (QoS) in terms of packet loss and latency to the DCN infrastructure. Slicing the DCNs into dedicated pieces according to the deployed applications, differentiated QoS, and high resource utilization can be provided. However, slicing the optical DCNs still needs to be investigated because the Software-defined Networking (SDN) technique is developed for the electrical networks, not fully supporting the properties of the optical network. Additionally, Network Slices (NS) need to be automatically provisioned and reconfigured, to provide flexible slice interconnections in support of the multi-tenant applications to be deployed. In this article, we propose and experimentally assess the automatic and flexible NSs configurations of optical OPSquare DCN controlled and orchestrated by an extended SDN control plane for multi-tenant applications with differentiated QoS provisioning. Optical Flow Control (OFC) protocol has been developed to prevent packet losses at switch sides caused by packet contentions. The extended OpenFlow (OF) protocol of SDN is deployed as well in support of the optical switching characteristics. Based on the collected resource topology of data plane, the optical network slices can be dynamically provisioned and automatically reconfigured by the SDN control plane. Meanwhile, experimental results validate that the priority assignment of application flows supplies dynamic QoS performance to various slices running applications with specific requirements in terms of packet loss and transmission latency. In addition, the capability of exposing traffic statistics information of data plane to SDN control plane enables the implementation of load balancing algorithms further improving the network performance with high QoS. No packet loss and less than 4.8 ÎĽs server-to-server latency can be guaranteed for the sliced network with highest priority at a load of 0.5.\u3c/p\u3
    corecore