406 research outputs found

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Traffic-aware adaptive server load balancing for software defined networks

    Get PDF
    Servers in data center networks handle heterogenous bulk loads. Load balancing, therefore, plays an important role in optimizing network bandwidth and minimizing response time. A complete knowledge of the current network status is needed to provide a stable load in the network. The process of network status catalog in a traditional network needs additional processing which increases complexity, whereas, in software defined networking, the control plane monitors the overall working of the network continuously. Hence it is decided to propose an efficient load balancing algorithm that adapts SDN. This paper proposes an efficient algorithm TA-ASLB-traffic-aware adaptive server load balancing to balance the flows to the servers in a data center network. It works based on two parameters, residual bandwidth, and server capacity. It detects the elephant flows and forwards them towards the optimal server where it can be processed quickly. It has been tested with the Mininet simulator and gave considerably better results compared to the existing server load balancing algorithms in the floodlight controller. After experimentation and analysis, it is understood that the method provides comparatively better results than the existing load balancing algorithms

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Peningkatan Utilisasi Jaringan Distributed Storage System Menggunakan Kombinasi Server dan Link Load Balancing

    Get PDF
    Distributed Storage System (DSS) memiliki sejumlah perangkat server penyimpanan yang terhubung dengan banyak perangkat switch untuk meningkatkan utilisasi jaringan. DSS harus memperhatikan keseimbangan beban pada sisi server penyimpanan dan trafik data pada semua jalur yang terhubung. Jika beban pada sisi server penyimpanan dan trafik data tidak seimbang, maka dapat menyebabkan bottleneck network yang menurunkan utilisasi jaringan. Kombinasi server dan link load balancing adalah solusi yang tepat untuk menyeimbangkan beban pada sisi server penyimpanan dan trafik data. Penelitian ini mengusulkan metode kombinasi algoritme least connection sebagai metode server-load balancing dan algoritme global first fit sebagai metode link load balancing. Algoritme global first fit merupakan salah satu dari algoritme load balancing hedera yang bertujuan untuk menyeimbangkan trafik data berukuran besar (10% dari bandwidth), sehingga terhindar dari permasalahan bottleneck network. Algoritme least connection merupakan salah satu algoritme server load balancing yang menggunakan jumlah total koneksi dari server untuk menentukan prioritas server. Hasil evaluasi kombinasi metode tersebut didapatkan peningkatan pada rata-rata throughput sebesar 77,9% dibanding hasil metode Equal Cost Multi Path (ECMP) dan Round robin (RR). Peningkatan pada rata-rata penggunaan bandwidth sebesar 65,2% dibanding hasil metode ECMP dan RR. Hasil Penggunaan CPU dan memory pada server di metode kombinasi ini juga terjadi penurunan beban CPU sebesar 34,29% dan penurunan beban penggunaan memory sebesar 9,8% dibanding metode ECMP dan RR. Dari hasil evaluasi, penerapan metode kombinasi metode server dan link load balancing berhasil meningkatkan utilisasi jaringan dan juga mengurangi beban server. AbstractDistributed Storage System (DSS) has a number of storage server devices that are connected to multiple switch devices to increase network utilization. DSS must pay attention to the balance of the load on the storage server side and data traffic on all connected lines. If the load on the storage server side and data traffic is not balanced, it can cause a network bottleneck that reduces network utilization. The combination of server and link-load balancing is the right solution to balance the load on the server side of storage and data traffic. This study proposes a combination of the least connection algorithm as a server-load balancing method and the global first fit algorithm as a link-load balancing method. The global first fit algorithm is one of Hedera's load balancing algorithms which aims to balance large data traffic (10% of bandwidth), so as to avoid network bottleneck problems. Least connection algorithm is one of the server balancing algorithms that uses the total number of connections from the server to determine server priority. The results of the evaluation of the combination of these methods showed an increase in the average throughput of 77.9% compared to the results of the Equal Cost Multi Path (ECMP) and Round robin (RR) methods. The increase in the average bandwidth usage is 65.2% compared to the results of the ECMP and RR methods. The results of CPU and memory usage on the server in this combination method also decreased CPU load by 34.29% and a decrease in memory usage load by 9.8% compared to the ECMP and RR methods. From the evaluation results, the application of a combination of the server method and the link load balancing method has succeeded in increasing network utilization and also reducing server load
    corecore