1,773 research outputs found

    A 5G Architecture for The Factory of the Future

    Full text link
    Factory automation and production are currently undergoing massive changes, and 5G is considered being a key enabler. In this paper, we state uses cases for using 5G in the factory of the future, which are motivated by actual needs of the industry partners of the "5Gang" consortium. Based on these use cases and the ones by 3GPP, a 5G system architecture for the factory of the future is proposed. It is set in relation to existing architectural frameworks.Comment: 8 pages, 7 figures Accepted for publication at 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Torino, Ital

    Realizing the Tactile Internet: Haptic Communications over Next Generation 5G Cellular Networks

    Full text link
    Prior Internet designs encompassed the fixed, mobile and lately the things Internet. In a natural evolution to these, the notion of the Tactile Internet is emerging which allows one to transmit touch and actuation in real-time. With voice and data communications driving the designs of the current Internets, the Tactile Internet will enable haptic communications, which in turn will be a paradigm shift in how skills and labor are digitally delivered globally. Design efforts for both the Tactile Internet and the underlying haptic communications are in its infancy. The aim of this article is thus to review some of the most stringent design challenges, as well as proposing first avenues for specific solutions to enable the Tactile Internet revolution.Comment: IEEE Wireless Communications - Accepted for Publicatio

    NFV and SDN - Key Technology Enablers for 5G Networks

    Full text link
    Communication networks are undergoing their next evolutionary step towards 5G. The 5G networks are envisioned to provide a flexible, scalable, agile and programmable network platform over which different services with varying requirements can be deployed and managed within strict performance bounds. In order to address these challenges a paradigm shift is taking place in the technologies that drive the networks, and thus their architecture. Innovative concepts and techniques are being developed to power the next generation mobile networks. At the heart of this development lie Network Function Virtualization and Software Defined Networking technologies, which are now recognized as being two of the key technology enablers for realizing 5G networks, and which have introduced a major change in the way network services are deployed and operated. For interested readers that are new to the field of SDN and NFV this paper provides an overview of both these technologies with reference to the 5G networks. Most importantly it describes how the two technologies complement each other and how they are expected to drive the networks of near future.Comment: This is an accepted version and consists of 11 pages, 9 figures and 32 reference

    Management and Orchestration of Network Slices in 5G, Fog, Edge and Clouds

    Full text link
    Network slicing allows network operators to build multiple isolated virtual networks on a shared physical network to accommodate a wide variety of services and applications. With network slicing, service providers can provide a cost-efficient solution towards meeting diverse performance requirements of deployed applications and services. Despite slicing benefits, End-to-End orchestration and management of network slices is a challenging and complicated task. In this chapter, we intend to survey all the relevant aspects of network slicing, with the focus on networking technologies such as Software-defined networking (SDN) and Network Function Virtualization (NFV) in 5G, Fog/Edge and Cloud Computing platforms. To build the required background, this chapter begins with a brief overview of 5G, Fog/Edge and Cloud computing, and their interplay. Then we cover the 5G vision for network slicing and extend it to the Fog and Cloud computing through surveying the state-of-the-art slicing approaches in these platforms. We conclude the chapter by discussing future directions, analyzing gaps and trends towards the network slicing realization.Comment: 31 pages, 4 figures, Fog and Edge Computing: Principles and Paradigms, Wiley Press, New York, USA, 201

    Ultra-Low Latency (ULL) Networks: The IEEE TSN and IETF DetNet Standards and Related 5G ULL Research

    Full text link
    Many network applications, e.g., industrial control, demand Ultra-Low Latency (ULL). However, traditional packet networks can only reduce the end-to-end latencies to the order of tens of milliseconds. The IEEE 802.1 Time Sensitive Networking (TSN) standard and related research studies have sought to provide link layer support for ULL networking, while the emerging IETF Deterministic Networking (DetNet) standards seek to provide the complementary network layer ULL support. This article provides an up-to-date comprehensive survey of the IEEE TSN and IETF DetNet standards and the related research studies. The survey of these standards and research studies is organized according to the main categories of flow concept, flow synchronization, flow management, flow control, and flow integrity. ULL networking mechanisms play a critical role in the emerging fifth generation (5G) network access chain from wireless devices via access, backhaul, and core networks. We survey the studies that specifically target the support of ULL in 5G networks, with the main categories of fronthaul, backhaul, and network management. Throughout, we identify the pitfalls and limitations of the existing standards and research studies. This survey can thus serve as a basis for the development of standards enhancements and future ULL research studies that address the identified pitfalls and limitations

    A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions

    Full text link
    The fifth generation (5G) wireless network technology is to be standardized by 2020, where main goals are to improve capacity, reliability, and energy efficiency, while reducing latency and massively increasing connection density. An integral part of 5G is the capability to transmit touch perception type real-time communication empowered by applicable robotics and haptics equipment at the network edge. In this regard, we need drastic changes in network architecture including core and radio access network (RAN) for achieving end-to-end latency on the order of 1 ms. In this paper, we present a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: RAN, core network, and caching. We also present a general overview of 5G cellular networks composed of software defined network (SDN), network function virtualization (NFV), caching, and mobile edge computing (MEC) capable of meeting latency and other 5G requirements.Comment: Accepted in IEEE Communications Surveys and Tutorial

    The Wireless Control Plane: An Overview and Directions for Future Research

    Full text link
    Software-defined networking (SDN), which has been successfully deployed in the management of complex data centers, has recently been incorporated into a myriad of 5G networks to intelligently manage a wide range of heterogeneous wireless devices, software systems, and wireless access technologies. Thus, the SDN control plane needs to communicate wirelessly with the wireless data plane either directly or indirectly. The uncertainties in the wireless SDN control plane (WCP) make its design challenging. Both WCP schemes (direct WCP, D-WCP, and indirect WCP, I-WCP) have been incorporated into recent 5G networks; however, a discussion of their design principles and their design limitations is missing. This paper introduces an overview of the WCP design (I-WCP and D-WCP) and discusses its intricacies by reviewing its deployment in recent 5G networks. Furthermore, to facilitate synthesizing a robust WCP, this paper proposes a generic WCP framework using deep reinforcement learning (DRL) principles and presents a roadmap for future research.Comment: This paper has been accepted to appear in Elsevier Journal of Networks and Computer Applications. It has 34 pages, 8 figures, and two table

    All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

    Full text link
    With the Internet of Things (IoT) becoming part of our daily life and our environment, we expect rapid growth in the number of connected devices. IoT is expected to connect billions of devices and humans to bring promising advantages for us. With this growth, fog computing, along with its related edge computing paradigms, such as multi-access edge computing (MEC) and cloudlet, are seen as promising solutions for handling the large volume of security-critical and time-sensitive data that is being produced by the IoT. In this paper, we first provide a tutorial on fog computing and its related computing paradigms, including their similarities and differences. Next, we provide a taxonomy of research topics in fog computing, and through a comprehensive survey, we summarize and categorize the efforts on fog computing and its related computing paradigms. Finally, we provide challenges and future directions for research in fog computing.Comment: 48 pages, 7 tables, 11 figures, 450 references. The data (categories and features/objectives of the papers) of this survey are now available publicly. Accepted by Elsevier Journal of Systems Architectur

    Energy and Information Management of Electric Vehicular Network: A Survey

    Full text link
    The connected vehicle paradigm empowers vehicles with the capability to communicate with neighboring vehicles and infrastructure, shifting the role of vehicles from a transportation tool to an intelligent service platform. Meanwhile, the transportation electrification pushes forward the electric vehicle (EV) commercialization to reduce the greenhouse gas emission by petroleum combustion. The unstoppable trends of connected vehicle and EVs transform the traditional vehicular system to an electric vehicular network (EVN), a clean, mobile, and safe system. However, due to the mobility and heterogeneity of the EVN, improper management of the network could result in charging overload and data congestion. Thus, energy and information management of the EVN should be carefully studied. In this paper, we provide a comprehensive survey on the deployment and management of EVN considering all three aspects of energy flow, data communication, and computation. We first introduce the management framework of EVN. Then, research works on the EV aggregator (AG) deployment are reviewed to provide energy and information infrastructure for the EVN. Based on the deployed AGs, we present the research work review on EV scheduling that includes both charging and vehicle-to-grid (V2G) scheduling. Moreover, related works on information communication and computing are surveyed under each scenario. Finally, we discuss open research issues in the EVN

    Next-generation Wireless Solutions for the Smart Factory, Smart Vehicles, the Smart Grid and Smart Cities

    Full text link
    5G wireless systems will extend mobile communication services beyond mobile telephony, mobile broadband, and massive machine-type communication into new application domains, namely the so-called vertical domains including the smart factory, smart vehicles, smart grid, smart city, etc. Supporting these vertical domains comes with demanding requirements: high-availability, high-reliability, low-latency, and in some cases, high-accuracy positioning. In this survey, we first identify the potential key performance requirements of 5G communication in support of automation in the vertical domains and highlight the 5G enabling technologies conceived for meeting these requirements. We then discuss the key challenges faced both by industry and academia which have to be addressed in order to support automation in the vertical domains. We also provide a survey of the related research dedicated to automation in the vertical domains. Finally, our vision of 6G wireless systems is discussed briefly
    corecore