6 research outputs found

    Enhancing programmability for adaptive resource management in next generation data centre networks

    Get PDF
    Recently, Data Centre (DC) infrastructures have been growing rapidly to support a wide range of emerging services, and provide the underlying connectivity and compute resources that facilitate the "*-as-a-Service" model. This has led to the deployment of a multitude of services multiplexed over few, very large-scale centralised infrastructures. In order to cope with the ebb and flow of users, services and traffic, infrastructures have been provisioned for peak-demand resulting in the average utilisation of resources to be low. This overprovisionning has been further motivated by the complexity in predicting traffic demands over diverse timescales and the stringent economic impact of outages. At the same time, the emergence of Software Defined Networking (SDN), is offering new means to monitor and manage the network infrastructure to address this underutilisation. This dissertation aims to show how measurement-based resource management can improve performance and resource utilisation by adaptively tuning the infrastructure to the changing operating conditions. To achieve this dynamicity, the infrastructure must be able to centrally monitor, notify and react based on the current operating state, from per-packet dynamics to longstanding traffic trends and topological changes. However, the management and orchestration abilities of current SDN realisations is too limiting and must evolve for next generation networks. The current focus has been on logically centralising the routing and forwarding decisions. However, in order to achieve the necessary fine-grained insight, the data plane of the individual device must be programmable to collect and disseminate the metrics of interest. The results of this work demonstrates that a logically centralised controller can dynamically collect and measure network operating metrics to subsequently compute and disseminate fine-tuned environment-specific settings. They show how this approach can prevent TCP throughput incast collapse and improve TCP performance by an order of magnitude for partition-aggregate traffic patterns. Futhermore, the paradigm is generalised to show the benefits for other services widely used in DCs such as, e.g, routing, telemetry, and security

    Improving video streaming experience through network measurements and analysis

    Get PDF
    Multimedia traffic dominates today’s Internet. In particular, the most prevalent traffic carried over wired and wireless networks is video. Most popular streaming providers (e.g. Netflix, Youtube) utilise HTTP adaptive streaming (HAS) for video content delivery to end-users. The power of HAS lies in the ability to change video quality in real time depending on the current state of the network (i.e. available network resources). The main goal of HAS algorithms is to maximise video quality while minimising re-buffering events and switching between different qualities. However, these requirements are opposite in nature, so striking a perfect blend is challenging, as there is no single widely accepted metric that captures user experience based on the aforementioned requirements. In recent years, researchers have put a lot of effort into designing subjectively validated metrics that can be used to map quality, re-buffering and switching behaviour of HAS players to the overall user experience (i.e. video QoE). This thesis demonstrates how data analysis can contribute in improving video QoE. One of the main characteristics of mobile networks is frequent throughput fluctuations. There are various underlying factors that contribute to this behaviour, including rapid changes in the radio channel conditions, system load and interaction between feedback loops at the different time scales. These fluctuations highlight the challenge to achieve a high video user experience. In this thesis, we tackle this issue by exploring the possibility of throughput prediction in cellular networks. The need for better throughput prediction comes from data-based evidence that standard throughput estimation techniques (e.g. exponential moving average) exhibit low prediction accuracy. Cellular networks deploy opportunistic exponential scheduling algorithms (i.e. proportional-fair) for resource allocation among mobile users/devices. These algorithms take into account a user’s physical layer information together with throughput demand. While the algorithm itself is proprietary to the manufacturer, physical layer and throughput information are exchanged between devices and base stations. Availability of this information allows for a data-driven approach for throughput prediction. This thesis utilises a machine-learning approach to predict available throughput based on measurements in the near past. As a result, a prediction accuracy with an error less than 15% in 90% of samples is achieved. Adding information from other devices served by the same base station (network-based information) further improves accuracy while lessening the need for a large history (i.e. how far to look into the past). Finally, the throughput prediction technique is incorporated to state-of-the-art HAS algorithms. The approach is validated in a commercial cellular network and on a stock mobile device. As a result, better throughput prediction helps in improving user experience up to 33%, while minimising re-buffering events by up to 85%. In contrast to wireless networks, channel characteristics of the wired medium are more stable, resulting in less prominent throughput variations. However, all traffic traverses through network queues (i.e. a router or switch), unlike in cellular networks where each user gets a dedicated queue at the base station. Furthermore, network operators usually deploy a simple first-in-first-out queuing discipline at queues. As a result, traffic can experience excessive delays due to the large queue sizes, usually deployed in order to minimise packet loss and maximise throughput. This effect, also known as bufferbloat, negatively impacts delay-sensitive applications, such as web browsing and voice. While there exist guidelines for modelling queue size, there is no work analysing its impact on video streaming traffic generated by multiple users. To answer this question, the performance of multiple videos clients sharing a bottleneck link is analysed. Moreover, the analysis is extended to a realistic case including heterogeneous round-trip-time (RTT) and traffic (i.e. web browsing). Based on experimental results, a simple two queue discipline is proposed for scheduling heterogeneous traffic by taking into account application characteristics. As a result, compared to the state-of-the-art Active Queue Management (AQM) discipline, Controlled Delay Management (CoDel), the proposed discipline decreases median Page Loading Time (PLT) of web traffic by up to 80% compared to CoDel, with no significant negative impact on video QoE

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore