306 research outputs found

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    A software-defined architecture for next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are undergoing fundamental changes and many established concepts are being revisited. New emerging paradigms, such as Software-Defined Networking (SDN), Mobile Cloud Computing (MCC), Network Function Virtualization (NFV), Internet of Things (IoT),and Mobile Social Networking (MSN), bring challenges in the design of cellular networks architectures. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a scalable and efficient way. In this paper, first we discuss the limitations of the current LTE architecture. Second, driven by the new communication needs and by the advances in aforementioned areas, we propose a new architecture for next generation cellular networks. Some of its characteristics include support for distributed content routing, Heterogeneous Networks(HetNets) and multiple Radio Access Technologies (RATs). Finally, we present simulation results which show that significant backhaul traffic savings can be achieved by implementing caching and routing functions at the network edge

    Joint routing and resource allocation for wireless backhauling of small cell networks

    Get PDF
    The future communication networks are destined to support an increasingly large amount of data traffic, and for that reason, efficient mechanisms to manage them are necessary. Based on a backhaul network, and starting from specific scenarios, we develop methods to jointly optimize the routing parameters and resources of this network. We relate this optimization with the Software Defined Networks and network virtualization concepts, which allow us to have an overall vision of the network, and lead us to study its decomposition. To do this, we use convex optimization techniques, which have very efficient resolution mechanisms, and help us to obtain tools for interpreting the obtained results and perform analysis on the network parameters. The achieved results show a great improvement in relation to the non-optimized case in terms of carried traffic, which is an assessment we make in the final economic analysis.Las redes de comunicaciones del futuro están destinadas a soportar una cantidad de tráfico de datos cada vez más elevada, y por eso son necesarios mecanismos eficientes para gestionarlas. Basándonos en una red de backhaul y partiendo de escenarios concretos, desarrollamos métodos para optimizar conjuntamente los parámetros de enrutamiento y los recursos de esta red. Esta optimización la ligamos con los conceptos de Software Defined Networksk y de network virtualization, que nos permiten tener una visión general de la red, y nos conducen a estudiar su descomposición. Esto lo hacemos usando técnicas de optimización convexa, que tiene mecanismos de resolución muy eficientes, y nos ayuda a obtener herramientas para interpretar los resultados obtenidos y hacer análisis de los parámetros de la red. Los resultados conseguidos muestran una gran mejora con relación al caso no optimizado en términos de tráfico transportado, valoración que recogemos en un análisis económico final.Les xarxes de comunicacions del futur estan destinades a suportar una quantitat de trànsit de dades cada cop més elevada, i per això són necessaris mecanismes eficients per a gestionar-les. Basant-nos en una xarxa de backhaul i partint d?escenaris concrets, desenvolupem mètodes per a optimitzar conjuntament els paràmetres d?encaminament i els recursos d?aquesta xarxa. Aquesta optimització la lliguem amb els conceptes de Software Defined Network i de network virtualization, que ens permeten tenir una visió general de la xarxa, i ens condueixen a estudiar-ne la seva descomposició. Tot això ho fem utilitzant tècniques d?optimització convexa, que té mecanismes de resolució molt eficients, i ens ajuda a obtenir eines per a interpretar els resultats obtinguts i fer anàlisis dels punts forts i febles de la xarxa. Els resultats aconseguits mostren una gran millora respecte el cas no optimitzat en termes de trànsit transportat, valoració que recollim en una anàlisi econòmica final

    5G infrastructures supporting end-user and operational services:The 5G-XHaul architectural perspective

    Get PDF
    We propose an optical-wireless 5G infrastructure offering converged fronthauling/backhauling functions to support both operational and end-user cloud services. A layered architectural structure required to efficiently support these services is shown. The data plane performance of the proposed infrastructure is evaluated in terms of energy consumption and service delay through a novel modelling framework. Our modelling results show that the proposed architecture can offer significant energy savings but there is a clear trade-off between overall energy consumption and service delay.Peer ReviewedPostprint (author's final draft

    Role of satellite communications in 5G ecosystem: perspectives and challenges

    Get PDF
    The next generation of mobile radio communication systems – so-called 5G – will provide some major changes to those generations to date. The ability to cope with huge increases in data traffic at reduced latencies and improved quality of user experience together with a major reduction in energy usage are big challenges. In addition, future systems will need to embody connections to billions of objects – the so-called Internet of Things (IoT) which raises new challenges.Visions of 5G are now available from regions across the world and research is ongoing towards new standards. The consensus is a flatter architecture that adds a dense network of small cells operating in the millimetre wave bands and which are adaptable and software controlled. But what is the place for satellites in such a vision? The chapter examines several potential roles for satellites in 5G including coverage extension, IoT, providing resilience, content caching and multi-cast, and the integrated architecture. Furthermore, the recent advances in satellite communications together with the challenges associated with the use of satellite in the integrated satellite-terrestrial architecture are also discussed

    SODALITE: SDN wireless backhauling for dense 4G/5G Small Cell networks

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Dense deployments of Small Cells are key to fulfill the capacity requirements of future 5G networks. However, two roadblocks to the adoption of Small Cells are i) the limited availability and the cost of sites with wired backhaul resources, and ii) the complexity to manage a dense deployment of wireless backhaul nodes. Towards these challenges we propose SODALITE, a novel system that applies Software Defined Networking (SDN) to a wireless backhaul network. We present how SODALITE can be integrated to 3GPP’s 4G and 5G architectures, and show the feasibility of SODALITE through LTE network testbed experiments. We substantiate the scalability of SODALITE through stochastic studies using real-life traffic traces from an LTE network and discuss the effects of cell densification and 5G system architecture on these studies. Further, a reliable backhauling solution for wireless links is introduced in SODALITE through SDN-enabled mechanisms that are capable of reconfiguring the data plane upon a link failure detection. Its reliability is shown through experiments on a LTE network testbed, and studied thoroughly via rigorous simulations and network emulator evaluations. As a result, we claim that SODALITE is a promising carrier-grade system to manage a wireless Small Cell backhaul.Postprint (author's final draft
    corecore