128 research outputs found

    Optimized traffic scheduling and routing in smart home networks

    Get PDF
    Home networks are evolving rapidly to include heterogeneous physical access and a large number of smart devices that generate different types of traffic with different distributions and different Quality of Service (QoS) requirements. Due to their particular architectures, which are very dense and very dynamic, the traditional one-pair-node shortest path solution is no longer efficient to handle inter-smart home networks (inter-SHNs) routing constraints such as delay, packet loss, and bandwidth in all-pair node heterogenous links. In addition, Current QoS-aware scheduling methods consider only the conventional priority metrics based on the IP Type of Service (ToS) field to make decisions for bandwidth allocation. Such priority based scheduling methods are not optimal to provide both QoS and Quality of Experience (QoE), especially for smart home applications, since higher priority traffic does not necessarily require higher stringent delay than lower-priority traffic. Moreover, current QoS-aware scheduling methods in the intra-smart home network (intra-SHN) do not consider concurrent traffic caused by the fluctuation of intra-SH network traffic distributions. Thus, the goal of this dissertation is to build an efficient heterogenous multi-constrained routing mechanism and an optimized traffic scheduling tool in order to maintain a cost-effective communication between all wired-wireless connected devices in inter-SHNs and to effectively process concurrent and non-concurrent traffic in intra-SHN. This will help Internet service providers (ISPs) and home user to enhance the overall QoS and QoE of their applications while maintaining a relevant communication in both inter-SHNs and intra-SHN. In order to meet this goal, three key issues are required to be addressed in our framework and are summarized as follows: i) how to build a cost-effective routing mechanism in heterogonous inter-SHNs ? ii) how to efficiently schedule the multi-sourced intra-SHN traffic based on both QoS and QoE ? and iii) how to design an optimized queuing model for intra-SHN concurrent traffics while considering their QoS requirements? As part of our contributions to solve the first problem highlighted above, we present an analytical framework for dynamically optimizing data flows in inter-SHNs using Software-defined networking (SDN). We formulate a QoS-based routing optimization problem as a constrained shortest path problem and then propose an optimized solution (QASDN) to determine minimal cost between all pairs of nodes in the network taking into account the different types of physical accesses and the network utilization patterns. To address the second issue and to solve the gaps between QoS and QoE, we propose a new queuing model for QoS-level Pair traffic with mixed arrival distributions in Smart Home network (QP-SH) to make a dynamic QoS-aware scheduling decision meeting delay requirements of all traffic while preserving their degrees of criticality. A new metric combining the ToS field and the maximum number of packets that can be processed by the system's service during the maximum required delay, is defined. Finally, as part of our contribution to address the third issue, we present an analytic model for a QoS-aware scheduling optimization of concurrent intra-SHN traffics with mixed arrival distributions and using probabilistic queuing disciplines. We formulate a hybrid QoS-aware scheduling problem for concurrent traffics in intra-SHN, propose an innovative queuing model (QC-SH) based on the auction economic model of game theory to provide a fair multiple access over different communication channels/ports, and design an applicable model to implement auction game on both sides; traffic sources and the home gateway, without changing the structure of the IEEE 802.11 standard. The results of our work offer SHNs more effective data transfer between all heterogenous connected devices with optimal resource utilization, a dynamic QoS/QoE-aware traffic processing in SHN as well as an innovative model for optimizing concurrent SHN traffic scheduling with enhanced fairness strategy. Numerical results show an improvement up to 90% for network resource utilization, 77% for bandwidth, 40% for scheduling with QoS and QoE and 57% for concurrent traffic scheduling delay using our proposed solutions compared with Traditional methods

    Quality of Experience monitoring and management strategies for future smart networks

    Get PDF
    One of the major driving forces of the service and network's provider market is the user's perceived service quality and expectations, which are referred to as user's Quality of Experience (QoE). It is evident that QoE is particularly critical for network providers, who are challenged with the multimedia engineering problems (e.g. processing, compression) typical of traditional networks. They need to have the right QoE monitoring and management mechanisms to have a significant impact on their budget (e.g. by reducing the users‘ churn). Moreover, due to the rapid growth of mobile networks and multimedia services, it is crucial for Internet Service Providers (ISPs) to accurately monitor and manage the QoE for the delivered services and at the same time keep the computational resources and the power consumption at low levels. The objective of this thesis is to investigate the issue of QoE monitoring and management for future networks. This research, developed during the PhD programme, aims to describe the State-of-the-Art and the concept of Virtual Probes (vProbes). Then, I proposed a QoE monitoring and management solution, two Agent-based solutions for QoE monitoring in LTE-Advanced networks, a QoE monitoring solution for multimedia services in 5G networks and an SDN-based approach for QoE management of multimedia services

    Exploring traffic and QoS management mechanisms to support mobile cloud computing using service localisation in heterogeneous environments

    Get PDF
    In recent years, mobile devices have evolved to support an amalgam of multimedia applications and content. However, the small size of these devices poses a limit the amount of local computing resources. The emergence of Cloud technology has set the ground for an era of task offloading for mobile devices and we are now seeing the deployment of applications that make more extensive use of Cloud processing as a means of augmenting the capabilities of mobiles. Mobile Cloud Computing is the term used to describe the convergence of these technologies towards applications and mechanisms that offload tasks from mobile devices to the Cloud. In order for mobile devices to access Cloud resources and successfully offload tasks there, a solution for constant and reliable connectivity is required. The proliferation of wireless technology ensures that networks are available almost everywhere in an urban environment and mobile devices can stay connected to a network at all times. However, user mobility is often the cause of intermittent connectivity that affects the performance of applications and ultimately degrades the user experience. 5th Generation Networks are introducing mechanisms that enable constant and reliable connectivity through seamless handovers between networks and provide the foundation for a tighter coupling between Cloud resources and mobiles. This convergence of technologies creates new challenges in the areas of traffic management and QoS provisioning. The constant connectivity to and reliance of mobile devices on Cloud resources have the potential of creating large traffic flows between networks. Furthermore, depending on the type of application generating the traffic flow, very strict QoS may be required from the networks as suboptimal performance may severely degrade an application’s functionality. In this thesis, I propose a new service delivery framework, centred on the convergence of Mobile Cloud Computing and 5G networks for the purpose of optimising service delivery in a mobile environment. The framework is used as a guideline for identifying different aspects of service delivery in a mobile environment and for providing a path for future research in this field. The focus of the thesis is placed on the service delivery mechanisms that are responsible for optimising the QoS and managing network traffic. I present a solution for managing traffic through dynamic service localisation according to user mobility and device connectivity. I implement a prototype of the solution in a virtualised environment as a proof of concept and demonstrate the functionality and results gathered from experimentation. Finally, I present a new approach to modelling network performance by taking into account user mobility. The model considers the overall performance of a persistent connection as the mobile node switches between different networks. Results from the model can be used to determine which networks will negatively affect application performance and what impact they will have for the duration of the user's movement. The proposed model is evaluated using an analytical approac

    A Decade of Research in Fog computing: Relevance, Challenges, and Future Directions

    Full text link
    Recent developments in the Internet of Things (IoT) and real-time applications, have led to the unprecedented growth in the connected devices and their generated data. Traditionally, this sensor data is transferred and processed at the cloud, and the control signals are sent back to the relevant actuators, as part of the IoT applications. This cloud-centric IoT model, resulted in increased latencies and network load, and compromised privacy. To address these problems, Fog Computing was coined by Cisco in 2012, a decade ago, which utilizes proximal computational resources for processing the sensor data. Ever since its proposal, fog computing has attracted significant attention and the research fraternity focused at addressing different challenges such as fog frameworks, simulators, resource management, placement strategies, quality of service aspects, fog economics etc. However, after a decade of research, we still do not see large-scale deployments of public/private fog networks, which can be utilized in realizing interesting IoT applications. In the literature, we only see pilot case studies and small-scale testbeds, and utilization of simulators for demonstrating scale of the specified models addressing the respective technical challenges. There are several reasons for this, and most importantly, fog computing did not present a clear business case for the companies and participating individuals yet. This paper summarizes the technical, non-functional and economic challenges, which have been posing hurdles in adopting fog computing, by consolidating them across different clusters. The paper also summarizes the relevant academic and industrial contributions in addressing these challenges and provides future research directions in realizing real-time fog computing applications, also considering the emerging trends such as federated learning and quantum computing.Comment: Accepted for publication at Wiley Software: Practice and Experience journa

    Toward Open and Programmable Wireless Network Edge

    Get PDF
    Increasingly, the last hop connecting users to their enterprise and home networks is wireless. Wireless is becoming ubiquitous not only in homes and enterprises but in public venues such as coffee shops, hospitals, and airports. However, most of the publicly and privately available wireless networks are proprietary and closed in operation. Also, there is little effort from industries to move forward on a path to greater openness for the requirement of innovation. Therefore, we believe it is the domain of university researchers to enable innovation through openness. In this thesis work, we introduce and defines the importance of open framework in addressing the complexity of the wireless network. The Software Defined Network (SDN) framework has emerged as a popular solution for the data center network. However, the promise of the SDN framework is to make the network open, flexible and programmable. In order to deliver on the promise, SDN must work for all users and across all networks, both wired and wireless. Therefore, we proposed to create new modules and APIs to extend the standard SDN framework all the way to the end-devices (i.e., mobile devices, APs). Thus, we want to provide an extensible and programmable abstraction of the wireless network as part of the current SDN-based solution. In this thesis work, we design and develop a framework, weSDN (wireless extension of SDN), that extends the SDN control capability all the way to the end devices to support client-network interaction capabilities and new services. weSDN enables the control-plane of wireless networks to be extended to mobile devices and allows for top-level decisions to be made from an SDN controller with knowledge of the network as a whole, rather than device centric configurations. In addition, weSDN easily obtains user application information, as well as the ability to monitor and control application flows dynamically. Based on the weSDN framework, we demonstrate new services such as application-aware traffic management, WLAN virtualization, and security management

    Estado del arte en redes definidas por software (SDN)

    Get PDF
    The growth of networks at a global level is inevitable due to the increase of users, devices and applications, such as: Internet of Things (IoT), processing and analysis of large amounts of information (Big Data), or streaming audio and video, which has demanded from the systems, greater storage resources and bandwidth. To this purpose, diverse paradigms have emerged for the centralized management of all the components of a network through fully administrable, centralized and dynamic technological platforms; among these is SDN (Software-Defined Networks). This document, consequently, establishes the state-of-art from a documentary research of a categorical type to be used as a frame of reference for research in the area of SDN by the Research Group of New Technologies of Social Application GIDENUTAS ascribed to the University Francisco Jose de Caldas. This is chronologically limited to a review, from 2007 until today, focused on the countries that have promoted the development and implementation of this new paradigm, using databases such as IEEE Xplore, Google Scholar, as well as documents from standardization organizations such as ONF and ITU.El crecimiento de las redes a nivel global es inevitable debido al aumento de usuarios, dispositivos y aplicaciones derivados de conceptos como pueden ser el Internet de las cosas (IoT, de inglés Internet-of-Things), el procesamiento y análisis de grandes cantidades de información (Big Data), o la transmisión de audio y video en vivo (Streaming), lo cual ha demandado de los sistemas mayores recursos de almacenamiento, ancho de banda y alta flexibilidad, entre otras características. Por lo anterior, han emergido paradigmas para la gestión centralizada de todos los componentes de una red mediante plataformas tecnológicas totalmente administrables, centralizadas y dinámicas; entre estas se encuentran SD-WAN (Software Defined-Wide Área Network) o SDR (Software-Defined Radio), ambas surgidas gracias al concepto de las Redes Definidas por Software o SDN (del inglés Software-Defined Networking). El presente documento, en consecuencia, establece un estado de arte a partir de una investigación documental de tipo categorial para utilizarse como un marco de referencia de investigaciones en el área de SDN por el grupo de Investigación de Nuevas Tecnologías de Aplicación Social GIDENUTAS adscrito a la Universidad Distrital Francisco José de Caldas. Esta se limita cronológicamente a una revisión, desde el año 2007 hasta hoy, enfocada en los países que han promovido el desarrollo e implementación de este nuevo paradigma, recurriendo a bases de datos como IEEE Xplore, Google Scholar, así como documentos de organizaciones de estandarización como la ONF y la ITU

    A Platform for Safer and Smarter Networks

    Get PDF
    The number of devices connected to the Internet is growing exponentially. These devices include smartphones, tablets, workstations and Internet of Things devices, which offer a number of cost and time savings by automating routine tasks for the users. However, these devices also introduce a number of security and privacy concerns for the users. These devices are connected to small office/home-office (SOHO) and enterprise networks, where users have very little to no information about threats associated to these devices and how these devices can be managed properly to ensure user's privacy and data security. We proposed a new platform to automate the security and management of the networks providing connectivity to billions of connected devices. Our platform is low cost, scalable and easy to deploy system, which provides network security and management features as a service. It is consisted of two main components i.e. Securebox and Security and Management Service (SMS). Securebox is a newly designed Openflow enabled gateway residing in edge networks and is responsible for enforcing the security and management decisions provided by SMS. SMS runs a number of traffic analysis services to analyze user traffic on demand for Botnet, Spamnet, malware detection. SMS also supports to deploy on demand software based middleboxes for on demand analysis of user traffic in isolated environment. It handles the configuration update, load balancing and scalability of these middlebox deployments as well. In contrast to current state of the art, the proposed platform offloads the security and management tasks to an external entity, providing a number of advantages in terms of deployment, management, configuration updates and device security. We have tested this platform in real world scenarios. Evaluation results show that the platform can be efficiently deployed in traditional networks in an incremental manner. It also allows us to achieve similar user experience with security features embedded in the connectivity
    corecore