456 research outputs found

    A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight

    Get PDF
    The exponential growth of mobile connected devices with advanced multimedia features imposes a requirement to enhance quality of service (QoS) from heterogeneous systems and networks. In order to satisfy mission-critical multimedia QoS requirements new generation mobile networks must present content-optimized mechanisms in order to use valuable network resources efficiently and provide QoS requirements for each application. This research explores a novel solution for quality of service performance for streaming mission-critical video data in OpenFlow SDN networks. A Meter Band Rate Evaluator (MBE) Mechanism is proposed based on a new band rate description language to improve the native QoS capability of OpenFlow and OpenDaylight. Its design and development are presented and the mechanism is verified through a simulated experiment in an SDN testbed. The results revealed a significant percentage increase in QoS performance when the MBE was enabled. These findings provide support and validation for the effectiveness of the MBE to enhance the native capability of OpenFlow and OpenDaylight for efficient QoS provision

    Quality management of surveillance multimedia streams via federated SDN controllers in Fiwi-iot integrated deployment environments

    Get PDF
    Traditionally, hybrid optical-wireless networks (Fiber-Wireless - FiWi domain) and last-mile Internet of Things edge networks (Edge IoT domain) have been considered independently, with no synergic management solutions. On the one hand, FiWi has primarily focused on high-bandwidth and low-latency access to cellular-equipped nodes. On the other hand, Edge IoT has mainly aimed at effective dispatching of sensor/actuator data among (possibly opportunistic) nodes, by using direct peer-to-peer and base station (BS)-assisted Internet communications. The paper originally proposes a model and an architecture that loosely federate FiWi and Edge IoT domains based on the interaction of FiWi and Edge IoT software defined networking controllers: The primary idea is that our federated controllers can seldom exchange monitoring data and control hints the one with the other, thus mutually enhancing their capability of end-to-end quality-aware packet management. To show the applicability and the effectiveness of the approach, our original proposal is applied to the notable example of multimedia stream provisioning from surveillance cameras deployed in the Edge IoT domain to both an infrastructure-side server and spontaneously interconnected mobile smartphones; our solution is able to tune the BS behavior of the FiWi domain and to reroute/prioritize traffic in the Edge IoT domain, with the final goal to reduce latency. In addition, the reported application case shows the capability of our solution of joint and coordinated exploitation of resources in FiWi and Edge IoT domains, with performance results that highlight its benefits in terms of efficiency and responsiveness

    Immersive interconnected virtual and augmented reality : a 5G and IoT perspective

    Get PDF
    Despite remarkable advances, current augmented and virtual reality (AR/VR) applications are a largely individual and local experience. Interconnected AR/VR, where participants can virtually interact across vast distances, remains a distant dream. The great barrier that stands between current technology and such applications is the stringent end-to-end latency requirement, which should not exceed 20 ms in order to avoid motion sickness and other discomforts. Bringing AR/VR to the next level to enable immersive interconnected AR/VR will require significant advances towards 5G ultra-reliable low-latency communication (URLLC) and a Tactile Internet of Things (IoT). In this article, we articulate the technical challenges to enable a future AR/VR end-to-end architecture, that combines 5G URLLC and Tactile IoT technology to support this next generation of interconnected AR/VR applications. Through the use of IoT sensors and actuators, AR/VR applications will be aware of the environmental and user context, supporting human-centric adaptations of the application logic, and lifelike interactions with the virtual environment. We present potential use cases and the required technological building blocks. For each of them, we delve into the current state of the art and challenges that need to be addressed before the dream of remote AR/VR interaction can become reality

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    A short survey on next generation 5G wireless networks

    Get PDF
    Current 4G - the fourth-generation wireless communication, which exists in most countries, represents an advance of the previous 3 generation wireless communication. However, there are some challenges and limitations, associated with an explosion of wireless devices, which cannot be accommodated by 4G. Increasing the proliferation of smart devices, the development of new multimedia applications, and the growing demand for high data rates are among the main problems of the existing 4G system. As a solution, the wireless system designers have started research on the fifth-generation wireless systems. 5G will be the paradigm shift that could provide with ultra-high data rate, low latency, an increase of the base station capacity, and the improved quality of services. This paper is a review of the changes through the evolution of existing cellular networks toward 5G.  It represented a comprehensive study associated with 5G, requirements for 5G, its advantages, and challenges. We will explain the architecture changes – radio access network (RAN), air interfaces, smart antennas, cloud RAN, and HetNet. Furthermore, it discussed physical layer technologies, which include new channel modes estimation, new antenna design, and MIMO technologies. Also, it discussed MAC layer protocols. The article included three kinds of technologies: heterogeneous networks, massive multiple-input and output, and millimeter-wave. Finally, it explained the applications, supported by 5G, new features, various possibilities, and predictions

    A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight

    Get PDF
    The exponential growth of mobile connected devices with advanced multimedia features imposes a requirement to enhance quality of service (QoS) from heterogeneous systems and networks. In order to satisfy mission-critical multimedia QoS requirements new generation mobile networks must present content-optimized mechanisms in order to use valuable network resources efficiently and provide QoS requirements for each application. This research explores a novel solution for quality of service performance for streaming mission-critical video data in OpenFlow SDN networks. A Meter Band Rate Evaluator (MBE) Mechanism is proposed based on a new band rate description language to improve the native QoS capability of OpenFlow and OpenDaylight. Its design and development are presented and the mechanism is verified through a simulated experiment in an SDN testbed. The results revealed a significant percentage increase in QoS performance when the MBE was enabled. These findings provide support and validation for the effectiveness of the MBE to enhance the native capability of OpenFlow and OpenDaylight for efficient QoS provision
    • …
    corecore