510 research outputs found

    A conceptual architecture for integrating software defined network and network virtualization with internet of things

    Get PDF
    Software defined network (SDN) and network function virtualization (NFV) are new paradigms and technologies of the network which support the best experience of providing functions and services, managing network traffic, and a new way of control. They support virtualization and separating data from control in network devices, as well as provide services in a software-based environment. Internet of things (IoT) is a heterogeneous network with a massive number of connected devices and objects. IoT should be integrated with such technologies for the purpose of providing the capabilities of dynamic reconfiguration with a high level of integration. This paper proposes a conceptual architecture for integrating software defined network (SDN) and NFV with IoT. The proposed work combines the three technologies together in one architecture. It also presents the previous works in this area and takes a look at the theoretical background of those technologies in order to give a complete view of proposed work

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Fog computing : enabling the management and orchestration of smart city applications in 5G networks

    Get PDF
    Fog computing extends the cloud computing paradigm by placing resources close to the edges of the network to deal with the upcoming growth of connected devices. Smart city applications, such as health monitoring and predictive maintenance, will introduce a new set of stringent requirements, such as low latency, since resources can be requested on-demand simultaneously by multiple devices at different locations. It is then necessary to adapt existing network technologies to future needs and design new architectural concepts to help meet these strict requirements. This article proposes a fog computing framework enabling autonomous management and orchestration functionalities in 5G-enabled smart cities. Our approach follows the guidelines of the European Telecommunications Standards Institute (ETSI) NFV MANO architecture extending it with additional software components. The contribution of our work is its fully-integrated fog node management system alongside the foreseen application layer Peer-to-Peer (P2P) fog protocol based on the Open Shortest Path First (OSPF) routing protocol for the exchange of application service provisioning information between fog nodes. Evaluations of an anomaly detection use case based on an air monitoring application are presented. Our results show that the proposed framework achieves a substantial reduction in network bandwidth usage and in latency when compared to centralized cloud solutions

    Automation for network security configuration: state of the art and research trends

    Get PDF
    The size and complexity of modern computer networks are progressively increasing, as a consequence of novel architectural paradigms such as the Internet of Things and network virtualization. Consequently, a manual orchestration and configuration of network security functions is no more feasible, in an environment where cyber attacks can dramatically exploit breaches related to any minimum configuration error. A new frontier is then the introduction of automation in network security configuration, i.e., automatically designing the architecture of security services and the configurations of network security functions, such as firewalls, VPN gateways, etc. This opportunity has been enabled by modern computer networks technologies, such as virtualization. In view of these considerations, the motivations for the introduction of automation in network security configuration are first introduced, alongside with the key automation enablers. Then, the current state of the art in this context is surveyed, focusing on both the achieved improvements and the current limitations. Finally, possible future trends in the field are illustrated

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A
    corecore