1,291 research outputs found

    NASA Advanced Explorations Systems: 2017 Advancements in Life Support Systems

    Get PDF
    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions planned in the mid-2020s and beyond. The LSS Project is focused on four are-as-architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the International Space Station (ISS) LSS systems as a point of departure where applicable, the three-fold mission of the LSS Project is to address discrete LSS technology gaps, to improve the reliability of LSS systems, and to advance LSS systems toward integrated testing aboard the ISS. This paper is a follow on to the AES LSS development status reported in 2016 and provides additional details on the progress made since that paper was published with specific attention to the status of the Aerosol Sampler ISS Flight Experiment, the Spacecraft Atmosphere Monitor (SAM) Flight Experiment, the Brine Processor Assembly (BPA) Flight Experiment, the CO2 removal technology development tasks, and the work investigating the impacts of dormancy on LSS systems

    NASA Advanced Explorations Systems: 2018 Advancements in Life Support Systems

    Get PDF
    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide envi-ronmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions planned in the mid-2020s and beyond. The LSS Project is focused on three life support areas: air revitalization, wastewater processing/water management and environmental monitoring. Building upon the International Space Station (ISS) LSS systems (where applicable), the three-fold mission of the LSS Project is to address discrete LSS technology gaps, to improve the reliability of LSS systems, and to advance LSS systems toward integrated testing aboard the ISS. This paper is a follow on to the AES LSS development status reported in 2017 and provides additional details on the progress made since that publication with specific attention to the status of the Aerosol Sampler ISS Flight Experiment, the Spacecraft Atmosphere Monitor (SAM) Flight Experiment, the Brine Processor Assembly (BPA) Flight Experiment as well as the progress of the terrestrial development in air, water and environmental monitoring technologies

    Advanced Exploration Systems Water Architecture Study Interim Results

    Get PDF
    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper

    Serving people : engineering - a response to aid challenges

    Get PDF
    O título da capa é: Serving people, engineering - a response to aid challenges : Suplly Chain Optimization Project in World Food Program/United NationsEstágio realizado no World Food Programme e orientado pelo Mr. Temmy TanubrataTese de mestrado integrado. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 200

    Foundations of Supply Chain Management for Space Application

    Get PDF
    Supply Chain Management (SCM) is a key piece of the framework for America's space technology investment as the National Aeronautics and Space Administration (NASA), the aerospace industry, and international partners embark on a bold new vision of human and robotic space exploration beyond Low-Earth-Orbit (LEO). This type of investment is driven by the Agency's need for cost efficient operational support associated with, processing and operating space vehicles and address many of the biggest operational challenge including extremely tight funding profiles, seamless program-to-program transition activities and the reduction of the time gap with human spaceflight capabilities in the post-Shuttle era. An investment of this magnitude is a multiyear task and must include new patterns of thought within the engineering community to respect the importance of SCM and the integration of the material and information flow. Experience within the Department of Defense and commercial sectors which has shown that support cost reductions and or avoidances of upwards to 35% over business as usual are achievable. It is SCM that will ultimately bring the solar system within the economic sphere of our society

    Supply Chain Performance Measurement Model: A Literature Review

    Get PDF
    Supply chain is being envisaged as an extended enterprise connecting business in different places and facilitating allies to propel competitive advantage in the era of globalization. Substantial research has been undertaken along with literatures on supply chain performance management from cost and non-cost standpoint, strategic, tactical or emphasis on operational aspects; perspectives from commercial as well as financial arenas. In order to gratify customer orders rapidly and efficiently than competitors, supply chain needs to warrant continuous upgradation of its processes and competitive strategies and to apprehend how supply chain contests? it is indispensable to realize the overall performance of the supply chain. However, still many companies miscarry to acquire effective performance measurement tools and techniques to attain integrated Supply Chain Management (SCM). The rationale of this paper is to evaluate the literature on performance measurement for supply chain to apprehend current practices, recognize gaps and advocate future research itineraries. The paper also offers a synopsis and appraisal of the performance measurement used through different supply chain models

    Comparison of Supply Chain Process Models based on Service-oriented Architecture

    Get PDF
    With the passage of time, supply chain processes have shifted toward IT-based business processes regarding service-oriented architecture (SOA) to augment the agility, integration, and flexibility of IT-based applications in enterprise networks. SOA, as a fast-growing paradigm in IT, uses Web service technologies and provides new pattern integration and interoperability in processes, services, and data. Consequently, many reference models have been developed in the field of SC processes to support the requirements for the related modeling, as well as to apply the development and implementation of supply chain information systems. The aim of this paper is to compare six main supply chain reference models regarding SOA and its underlying concepts and to identify which reference model can support different stages of information system development. The results show that no supply chain reference model can support both the coordination and interaction of process models in more detail and with a service-oriented approach in supply chain process modeling. Moreover, there is a need for a plausible methodology for business process modeling based on the service-oriented approach in the domain of supply chain management (SCM)

    An Investigation into Factors Affecting the Chilled Food Industry

    Get PDF
    With the advent of Industry 4.0, many new approaches towards process monitoring, benchmarking and traceability are becoming available, and these techniques have the potential to radically transform the agri-food sector. In particular, the chilled food supply chain (CFSC) contains a number of unique challenges by virtue of it being thought of as a temperature controlled supply chain. Therefore, once the key issues affecting the CFSC have been identified, algorithms can be proposed, which would allow realistic thresholds to be established for managing these problems on the micro, meso and macro scales. Hence, a study is required into factors affecting the CFSC within the scope of Industry 4.0. The study itself has been broken down into four main topics: identifying the key issues within the CFSC; implementing a philosophy of continuous improvement within the CFSC; identifying uncertainty within the CFSC; improving and measuring the performance of the supply chain. However, as a consequence of this study two further topics were added: a discussion of some of the issues surrounding information sharing between retailers and suppliers; some of the wider issues affecting food losses and wastage (FLW) on the micro, meso and macro scales. A hybrid algorithm is developed, which incorporates the analytic hierarchical process (AHP) for qualitative issues and data envelopment analysis (DEA) for quantitative issues. The hybrid algorithm itself is a development of the internal auditing algorithm proposed by Sueyoshi et al (2009), which in turn was developed following corporate scandals such as Tyco, Enron, and WorldCom, which have led to a decline in public trust. However, the advantage of the proposed solution is that all of the key issues within the CFSC identified can be managed from a single computer terminal, whilst the risk of food contamination such as the 2013 horsemeat scandal can be avoided via improved traceability
    • …
    corecore