2,730 research outputs found

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Autotuning for Automatic Parallelization on Heterogeneous Systems

    Get PDF

    Development of a calibration pipeline for a monocular-view structured illumination 3D sensor utilizing an array projector

    Get PDF
    Commercial off-the-shelf digital projection systems are commonly used in active structured illumination photogrammetry of macro-scale surfaces due to their relatively low cost, accessibility, and ease of use. They can be described as inverse pinhole modelled. The calibration pipeline of a 3D sensor utilizing pinhole devices in a projector-camera setup configuration is already well-established. Recently, there have been advances in creating projection systems offering projection speeds greater than that available from conventional off-the-shelf digital projectors. However, they cannot be calibrated using well established techniques based on the pinole assumption. They are chip-less and without projection lens. This work is based on the utilization of unconventional projection systems known as array projectors which contain not one but multiple projection channels that project a temporal sequence of illumination patterns. None of the channels implement a digital projection chip or a projection lens. To workaround the calibration problem, previous realizations of a 3D sensor based on an array projector required a stereo-camera setup. Triangulation took place between the two pinhole modelled cameras instead. However, a monocular setup is desired as a single camera configuration results in decreased cost, weight, and form-factor. This study presents a novel calibration pipeline that realizes a single camera setup. A generalized intrinsic calibration process without model assumptions was developed that directly samples the illumination frustum of each array projection channel. An extrinsic calibration process was then created that determines the pose of the single camera through a downhill simplex optimization initialized by particle swarm. Lastly, a method to store the intrinsic calibration with the aid of an easily realizable calibration jig was developed for re-use in arbitrary measurement camera positions so that intrinsic calibration does not have to be repeated

    Learning to Pivot as a Smart Expert

    Full text link
    Linear programming has been practically solved mainly by simplex and interior point methods. Compared with the weakly polynomial complexity obtained by the interior point methods, the existence of strongly polynomial bounds for the length of the pivot path generated by the simplex methods remains a mystery. In this paper, we propose two novel pivot experts that leverage both global and local information of the linear programming instances for the primal simplex method and show their excellent performance numerically. The experts can be regarded as a benchmark to evaluate the performance of classical pivot rules, although they are hard to directly implement. To tackle this challenge, we employ a graph convolutional neural network model, trained via imitation learning, to mimic the behavior of the pivot expert. Our pivot rule, learned empirically, displays a significant advantage over conventional methods in various linear programming problems, as demonstrated through a series of rigorous experiments

    Adaptive multibeam phased array design for a Spacelab experiment

    Get PDF
    The parametric tradeoff analyses and design for an Adaptive Multibeam Phased Array (AMPA) for a Spacelab experiment are described. This AMPA Experiment System was designed with particular emphasis to maximize channel capacity and minimize implementation and cost impacts for future austere maritime and aeronautical users, operating with a low gain hemispherical coverage antenna element, low effective radiated power, and low antenna gain-to-system noise temperature ratio

    Power System Dynamics Enhancement Through Phase Unbalanced and Adaptive Control Schemes in Series FACTS devices

    Get PDF
    This thesis presents novel series compensation schemes and adaptive control techniques to enhance power system dynamics through damping Subsynchronous Resonance (SSR) and low-frequency power oscillations: local and inter-area oscillations. Series capacitive compensation of transmission lines is used to improve power transfer capability of the transmission line and is economical compared to the addition of new lines. However, one of the impeding factors for the increased utilization of series capacitive compensation is the potential risk of SSR, where electrical energy is exchanged with turbine-generator shaft systems in a growing manner which can result in shaft damage. Furthermore, the fixed capacitor does not provide controllable reactance and does not aid in the low-frequency oscillations damping. The Flexible AC Transmission System (FACTS) controllers have the flexibility of controlling both real and reactive power which could provide an excellent capability for improving power system dynamics. Several studies have investigated the potential of using this capability in mitigating the low-frequency (electromechanical) as well as the subsynchronous resonance (SSR) oscillations. However, the practical implementations of FACTS devices are very limited due to their high cost. To address this issue, this thesis proposes a new series capacitive compensation concept capable of enhancing power system dynamics. The idea behind the concept is a series capacitive compensation which provides balanced compensation at the power frequency while it provides phase unbalance at other frequencies of oscillations. The compensation scheme is a combination of a single-phase Thyristor Controlled Series Capacitor (TCSC) or Static Synchronous Series Compensator (SSSC) and a fixed series capacitors in series in one phase of the compensated transmission line and fixed capacitors on the other two phases. The proposed scheme is economical compared to a full three-phase FACTS counterpart and improves reliability of the device by reducing number of switching components. The phase unbalance during transients reduces the coupling strength between the mechanical and the electrical system at asynchronous oscillations, thus suppressing the build-up of torsional stresses on the generator shaft systems. The SSR oscillations damping capability of the schemes is validated through detailed time-domain electromagnetic transient simulation studies on the IEEE first and second benchmark models. Furthermore, as the proposed schemes provide controllable reactance through TCSC or SSSC, the supplementary controllers can be implemented to damp low-frequency power oscillations as well. The low-frequency damping capability of the schemes is validated through detail time-domain electromagnetic transient simulation studies on two machines systems connected to a very large system and a three-area, six-machine power system. The simulation studies are carried out using commercially available electromagnetic transient simulation tools (EMTP-RV and PSCAD/EMTDC). An adaptive controller consisting of a robust on-line identifier, namely a robust Recursive Least Square (RLS), and a Pole-Shift (PS) controller is also proposed to provide optimal damping over a wide range of power system operations. The proposed identifier penalizes large estimated errors and smooth-out the change in parameters during large power system disturbances. The PS control is ideal for its robustness and stability conditions. The combination results in a computationally efficient estimator and a controller suitable for optimal control over wider range of operations of a non-linear system such as power system. The most important aspect of the controller is that it can be designed with an approximate linearized model of the complete power system, and does not need to be re-tuned after it is commissioned. The damping capability of such controller is demonstrated through detail studies on a three-area test system and on an IEEE 12-bus test system. Finally, the adaptive control algorithm is developed on a Digital Signal Processing Board, and the performance is experimentally tested using hardware-in-the-loop studies. For this purpose, a Real Time Digital Simulator (RTDS) is used, which is capable of simulating power system in real-time at 50 µs simulation time step. The RTDS facilitates the performance evaluation of a controller just like testing on a real power system. The experimental results match closely with the simulation results; which demonstrated the practical applicability of the adaptive controller in power systems. The proposed controller is computationally efficient and simple to implement in DSP hardware
    corecore