17,178 research outputs found

    QRAT+: Generalizing QRAT by a More Powerful QBF Redundancy Property

    Full text link
    The QRAT (quantified resolution asymmetric tautology) proof system simulates virtually all inference rules applied in state of the art quantified Boolean formula (QBF) reasoning tools. It consists of rules to rewrite a QBF by adding and deleting clauses and universal literals that have a certain redundancy property. To check for this redundancy property in QRAT, propositional unit propagation (UP) is applied to the quantifier free, i.e., propositional part of the QBF. We generalize the redundancy property in the QRAT system by QBF specific UP (QUP). QUP extends UP by the universal reduction operation to eliminate universal literals from clauses. We apply QUP to an abstraction of the QBF where certain universal quantifiers are converted into existential ones. This way, we obtain a generalization of QRAT we call QRAT+. The redundancy property in QRAT+ based on QUP is more powerful than the one in QRAT based on UP. We report on proof theoretical improvements and experimental results to illustrate the benefits of QRAT+ for QBF preprocessing.Comment: preprint of a paper to be published at IJCAR 2018, LNCS, Springer, including appendi

    Strengthening Model Checking Techniques with Inductive Invariants

    Get PDF
    This paper describes optimized techniques to efficiently compute and reap benefits from inductive invariants within SAT-based model checking. We address sequential circuit verification, and we consider both equivalences and implications between pairs of nodes in the logic networks. First, we present a very efficient dynamic procedure, based on equivalence classes and incremental SAT, specifically oriented to reduce the set of checked invariants. Then, we show how to effectively integrate the computation of inductive invariants within state-of-the-art SAT-based model checking procedures. Experiments (on more than 600 designs) show the robustness of our approach on verification instances on which stand-alone techniques fai

    Circuit Based Quantification: Back to State Set Manipulation within Unbounded Model Checking

    Get PDF
    In this paper a non-canonical circuit-based state set representation is used to efficiently perform quantifier elimination. The novelty of this approach lies in adapting equivalence checking and logic synthesis techniques, to the goal of compacting circuit based state set representations resulting from existential quantification. The method can be efficiently combined with other verification approaches such as inductive and SAT-based pre-image verifications

    Identifying Security-Critical Cyber-Physical Components in Industrial Control Systems

    Get PDF
    In recent years, Industrial Control Systems (ICS) have become an appealing target for cyber attacks, having massive destructive consequences. Security metrics are therefore essential to assess their security posture. In this paper, we present a novel ICS security metric based on AND/OR graphs that represent cyber-physical dependencies among network components. Our metric is able to efficiently identify sets of critical cyber-physical components, with minimal cost for an attacker, such that if compromised, the system would enter into a non-operational state. We address this problem by efficiently transforming the input AND/OR graph-based model into a weighted logical formula that is then used to build and solve a Weighted Partial MAX-SAT problem. Our tool, META4ICS, leverages state-of-the-art techniques from the field of logical satisfiability optimisation in order to achieve efficient computation times. Our experimental results indicate that the proposed security metric can efficiently scale to networks with thousands of nodes and be computed in seconds. In addition, we present a case study where we have used our system to analyse the security posture of a realistic water transport network. We discuss our findings on the plant as well as further security applications of our metric.Comment: Keywords: Security metrics, industrial control systems, cyber-physical systems, AND-OR graphs, MAX-SAT resolutio

    Partial Quantifier Elimination

    Full text link
    We consider the problem of Partial Quantifier Elimination (PQE). Given formula exists(X)[F(X,Y) & G(X,Y)], where F, G are in conjunctive normal form, the PQE problem is to find a formula F*(Y) such that F* & exists(X)[G] is logically equivalent to exists(X)[F & G]. We solve the PQE problem by generating and adding to F clauses over the free variables that make the clauses of F with quantified variables redundant. The traditional Quantifier Elimination problem (QE) is a special case of PQE where G is empty so all clauses of the input formula with quantified variables need to be made redundant. The importance of PQE is twofold. First, many problems are more naturally formulated in terms of PQE rather than QE. Second, in many cases PQE can be solved more efficiently than QE. We describe a PQE algorithm based on the machinery of dependency sequents and give experimental results showing the promise of PQE

    Boolean Satisfiability in Electronic Design Automation

    No full text
    Boolean Satisfiability (SAT) is often used as the underlying model for a significant and increasing number of applications in Electronic Design Automation (EDA) as well as in many other fields of Computer Science and Engineering. In recent years, new and efficient algorithms for SAT have been developed, allowing much larger problem instances to be solved. SAT “packages” are currently expected to have an impact on EDA applications similar to that of BDD packages since their introduction more than a decade ago. This tutorial paper is aimed at introducing the EDA professional to the Boolean satisfiability problem. Specifically, we highlight the use of SAT models to formulate a number of EDA problems in such diverse areas as test pattern generation, circuit delay computation, logic optimization, combinational equivalence checking, bounded model checking and functional test vector generation, among others. In addition, we provide an overview of the algorithmic techniques commonly used for solving SAT, including those that have seen widespread use in specific EDA applications. We categorize these algorithmic techniques, indicating which have been shown to be best suited for which tasks

    Partial Quantifier Elimination By Certificate Clauses

    Full text link
    We study partial quantifier elimination (PQE) for propositional CNF formulas. In contrast to full quantifier elimination, in PQE, one can limit the set of clauses taken out of the scope of quantifiers to a small subset of target clauses. The appeal of PQE is twofold. First, PQE can be dramatically simpler than full quantifier elimination. Second, it provides a language for performing incremental computations. Many verification problems (e.g. equivalence checking and model checking) are inherently incremental and so can be solved in terms of PQE. Our approach is based on deriving clauses depending only on unquantified variables that make the target clauses redundant\mathit{redundant}. Proving redundancy of a target clause is done by construction of a ``certificate'' clause implying the former. We describe a PQE algorithm called START\mathit{START} that employs the approach above. We apply START\mathit{START} to generating properties of a design implementation that are not implied by specification. The existence of an unwanted\mathit{unwanted} property means that this implementation is buggy. Our experiments with HWMCC-13 benchmarks suggest that START\mathit{START} can be used for generating properties of real-life designs
    corecore