19,167 research outputs found

    An approximation trichotomy for Boolean #CSP

    Get PDF
    We give a trichotomy theorem for the complexity of approximately counting the number of satisfying assignments of a Boolean CSP instance. Such problems are parameterised by a constraint language specifying the relations that may be used in constraints. If every relation in the constraint language is affine then the number of satisfying assignments can be exactly counted in polynomial time. Otherwise, if every relation in the constraint language is in the co-clone IM_2 from Post's lattice, then the problem of counting satisfying assignments is complete with respect to approximation-preserving reductions in the complexity class #RH\Pi_1. This means that the problem of approximately counting satisfying assignments of such a CSP instance is equivalent in complexity to several other known counting problems, including the problem of approximately counting the number of independent sets in a bipartite graph. For every other fixed constraint language, the problem is complete for #P with respect to approximation-preserving reductions, meaning that there is no fully polynomial randomised approximation scheme for counting satisfying assignments unless NP=RP

    Proving Looping and Non-Looping Non-Termination by Finite Automata

    Get PDF
    A new technique is presented to prove non-termination of term rewriting. The basic idea is to find a non-empty regular language of terms that is closed under rewriting and does not contain normal forms. It is automated by representing the language by a tree automaton with a fixed number of states, and expressing the mentioned requirements in a SAT formula. Satisfiability of this formula implies non-termination. Our approach succeeds for many examples where all earlier techniques fail, for instance for the S-rule from combinatory logic
    • …
    corecore