358 research outputs found

    A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition

    Get PDF
    UIDB/50006/2020 UIDB/04378/2020 Norma transitória DL 57/2016The investigation of marine natural products (MNPs) as key resources for the discovery of drugs to mitigate the COVID-19 pandemic is a developing field. In this work, computer-aided drug design (CADD) approaches comprising ligand- and structure-based methods were explored for predicting SARS-CoV-2 main protease (Mpro) inhibitors. The CADD ligand-based method used a quantitative structure–activity relationship (QSAR) classification model that was built using 5276 organic molecules extracted from the ChEMBL database with SARS-CoV-2 screening data. The best model achieved an overall predictive accuracy of up to 67% for an external and internal validation using test and training sets. Moreover, based on the best QSAR model, a virtual screening campaign was carried out using 11,162 MNPs retrieved from the Reaxys® database, 7 in-house MNPs obtained from marine-derived actinomycetes by the team, and 14 MNPs that are currently in the clinical pipeline. All the MNPs from the virtual screening libraries that were predicted as belonging to class A were selected for the CADD structure-based method. In the CADD structure-based approach, the 494 MNPs selected by the QSAR approach were screened by molecular docking against Mpro enzyme. A list of virtual screening hits comprising fifteen MNPs was assented by establishing several limits in this CADD approach, and five MNPs were proposed as the most promising marine drug-like leads as SARS-CoV-2 Mpro inhibitors, a benzo[f]pyrano[4,3-b]chromene, notoamide I, emindole SB beta-mannoside, and two bromoindole derivatives.publishersversionpublishe

    Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates

    Full text link
    Computational drug design based on artificial intelligence is an emerging research area. At the time of writing this paper, the world suffers from an outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus replication is via protease inhibition. We propose an evolutionary multi-objective algorithm (EMOA) to design potential protease inhibitors for SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA maximizes the binding of candidate ligands to the protein using the docking tool QuickVina 2, while at the same time taking into account further objectives like drug-likeliness or the fulfillment of filter constraints. The experimental part analyzes the evolutionary process and discusses the inhibitor candidates.Comment: 15 pages, 7 figures, submitted to PPSN 202

    Strengths and Weaknesses of Docking Simulations in the SARS-CoV-2 Era: The Main Protease (Mpro) Case Study

    Get PDF
    The scientific community is working against the clock to arrive at therapeutic interventions to treat patients with COVID-19. Among the strategies for drug discovery, virtual screening approaches have the capacity to search potential hits within millions of chemical structures in days, with the appropriate computing infrastructure. In this article, we first analyzed the published research targeting the inhibition of the main protease (Mpro), one of the most studied targets of SARS-CoV-2, by docking-based methods. An alarming finding was the lack of an adequate validation of the docking protocols (i.e., pose prediction and virtual screening accuracy) before applying them in virtual screening campaigns. The performance of the docking protocols was tested at some level in 57.7% of the 168 investigations analyzed. However, we found only three examples of a complete retrospective analysis of the scoring functions to quantify the virtual screening accuracy of the methods. Moreover, only two publications reported some experimental evaluation of the proposed hits until preparing this manuscript. All of these findings led us to carry out a retrospective performance validation of three different docking protocols, through the analysis of their pose prediction and screening accuracy. Surprisingly, we found that even though all tested docking protocols have a good pose prediction, their screening accuracy is quite limited as they fail to correctly rank a test set of compounds. These results highlight the importance of conducting an adequate validation of the docking protocols before carrying out virtual screening campaigns, and to experimentally confirm the predictions made by the models before drawing bold conclusions. Finally, successful structure-based drug discovery investigations published during the redaction of this manuscript allow us to propose the inclusion of target flexibility and consensus scoring as alternatives to improve the accuracy of the methods.Fil: Llanos, Manuel. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Gantner, Melisa Edith. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Rodríguez, Santiago. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Alberca, Lucas Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Bellera, Carolina Leticia. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Gavernet, Luciana. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    MEDIATE - Molecular DockIng at homE: Turning collaborative simulations into therapeutic solutions

    Get PDF
    IntroductionCollaborative computing has attracted great interest in the possibility of joining the efforts of researchers worldwide. Its relevance has further increased during the pandemic crisis since it allows for the strengthening of scientific collaborations while avoiding physical interactions. Thus, the E4C consortium presents the MEDIATE initiative which invited researchers to contribute via their virtual screening simulations that will be combined with AI-based consensus approaches to provide robust and method-independent predictions. The best compounds will be tested, and the biological results will be shared with the scientific community.Areas coveredIn this paper, the MEDIATE initiative is described. This shares compounds' libraries and protein structures prepared to perform standardized virtual screenings. Preliminary analyses are also reported which provide encouraging results emphasizing the MEDIATE initiative's capacity to identify active compounds.Expert opinionStructure-based virtual screening is well-suited for collaborative projects provided that the participating researchers work on the same input file. Until now, such a strategy was rarely pursued and most initiatives in the field were organized as challenges. The MEDIATE platform is focused on SARS-CoV-2 targets but can be seen as a prototype which can be utilized to perform collaborative virtual screening campaigns in any therapeutic field by sharing the appropriate input files

    Scaffold hopping of α-rubromycin enables direct access to FDA-approved cromoglicic acid as a SARS-CoV-2 M<sup>Pro</sup> inhibitor

    Get PDF
    The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, an antibiotic derived from Streptomyces collinus ATCC19743, which was able to suppress the catalytic activity (IC50 = 5.4 µM and Ki = 3.22 µM) of one of the viral key enzymes (i.e., MPro). However, it showed high cytotoxicity toward normal human fibroblasts (CC50 = 16.7 µM). To reduce the cytotoxicity of this microbial metabolite, we utilized a number of in silico tools (ensemble docking, molecular dynamics simulation, binding free energy calculation) to propose a novel scaffold having the main pharmacophoric features to inhibit MPro with better drug-like properties and reduced/minimal toxicity. Nevertheless, reaching this novel scaffold synthetically is a time-consuming process, particularly at this critical time. Instead, this scaffold was used as a template to explore similar molecules among the FDA-approved medications that share its main pharmacophoric features with the aid of pharmacophore-based virtual screening software. As a result, cromoglicic acid (aka cromolyn) was found to be the best hit, which, upon in vitro MPro testing, was 4.5 times more potent (IC50 = 1.1 µM and Ki = 0.68 µM) than α-rubromycin, with minimal cytotoxicity toward normal human fibroblasts (CC50 &gt; 100 µM). This report highlights the potential of MNPs in providing unprecedented scaffolds with a wide range of therapeutic efficacy. It also revealed the importance of cheminformatics tools in speeding up the drug discovery process, which is extremely important in such a critical situation

    Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics

    Get PDF
    To date, computational approaches have been recognized as a key component in drug design and discovery workflows. Developed to help researchers save time and reduce costs, several computational tools have been developed and implemented in the last twenty years. At present, they are routinely used to identify a therapeutic target, understand ligand–protein and protein–protein interactions, and identify orthosteric and allosteric binding sites, but their primary use remains the identification of hits through ligand-based and structure-based virtual screening and the optimization of lead compounds, followed by the estimation of the binding free energy. The repurposing of an old drug for the treatment of new diseases, helped by in silico tools, has also gained a prominent role in virtual screening campaigns. Moreover, the availability and the decreasing cost of hardware and software, together with the development of several web servers on which to upload and download computational data, have contributed to the success of computer-assisted drug design. These improved, accurate, and reliable methods should help to add new and more potent molecules to the paraphernalia of approved drugs. Nevertheless, the ease of access of computational tools in drug design (software, databases, libraries, and web servers) should not encourage users with little or almost no knowledge of the underlying physical basis of the methods used, who could compromise the interpretation of the results. The figure of the computational (medicinal) chemist should be recognized and included in all research groups. These considerations led us to promote a volume collecting some original contributions regarding all aspects of the computational approaches, such as docking, induced-fit docking, molecular dynamics simulations, free energy calculations, and reverse modeling. We also include ligand-based approaches, such as molecular similarity fingerprints, shape methods, pharmacophore modeling, and QSAR. Drug design and the development process strive to predict the metabolic fate of a drug candidate to establish a relationship between the pharmacodynamics and pharmacokinetics and highlight the potential toxicity of the drug candidate. Even though the use of computational approaches is often combined, we tried to identify which of these play a central role in each manuscript. In this Special Issue, the use of molecular dynamics simulations, both unbiased and biased, cover a major part of the contributions. Non-covalent inhibition of the immunoproteasome was investigated in-depth through MD-binding and binding pose metadynamics [1]. MD simulations provided insight into the structural features of hTSPO (Translocator Protein) and the previously unknown interplay between PK11195, a molecule routinely used in positron emission tomography (PET) for the imaging of neuroinflammatory sites, and cholesterol [2]. The interaction of certain endogen substrates, drug substrates, and inhibitors with wild-type MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using several approaches, but particularly all-atom, coarse-grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively) [3]. Natural sodium–glucose co-transporter 2 (SGLT2) inhibitors were selected to explore their potential against an emerging uropathogenic bacterial therapeutic target, i.e., FimH, which plays a critical role in the colonization of uropathogenic bacteria on the urinary tract surface, and molecular dynamics simulations were carried out to study the potential interactions [4]. Doxorubicin encapsulation in carbon nanotubes with haeckelite or Stone–Wales defects as drug carriers were investigated using a molecular dynamics approach [5]. The combined use of different approaches has been reported in a series of papers associated with the virtual screening of libraries. Almeelebia and co. screened 224,205 natural compounds from the ZINC database against the catalytic site of the Mtb proteasome [6]. Pharmacophore-based virtual screening and molecular docking were carried out to identify potential Src inhibitors starting from a total of 891 molecules. Finally, MD simulations identified two molecules as potential lead compounds against Src kinase [7]. An in silico study identified a methotrexate analog as a potential inhibitor of drug-resistant human dihydrofolate reductase for cancer therapeutics [8]. A structure-based method for high-throughput virtual screening aimed to identify new dual-target hit molecules for acetylcholinesterase, and the α7 nicotinic acetylcholine receptor was reported and confirmed in vitro [9]. A new complementary computational analysis called “dock binning” evaluates antibody–antigen docking models to identify why and where they might compete in terms of possible binding sites on the antigen [10]. Interesting drug repurposing strategies have been reported. Hudson and Samudrala presented a computational analysis of a novel drug opportunities (CANDO) platform for shotgun multitarget repurposing. It implements several pipelines for the large-scale modeling and simulation of interactions between comprehensive libraries of drugs/compounds and protein structures [11]. Qi and co. data-mined the crowd extracted expression of differential signatures (CREEDS) database to evaluate the similarities between gene expression signature (GES) profiles from drugs and their indicated diseases for GES-guided drug-repositioning approaches [12]. In late 2019, the SARS-CoV-2 pandemic focused the attention of many researchers intending to find not only vaccines but also new antiviral drugs. These reasons boosted the use of computational approaches to explore large libraries of natural compounds, already approved drugs, and in-house and commercial compounds [13,14]. In this issue, Baig and co. studied the efficacy of the Mpro inhibitor PF-00835231 against Mpro and its reported mutants in clinical trials. Several in silico approaches were used to investigate and compare the efficacy of PF-00835231 and five drugs previously documented to inhibit Mpro [15]. Li and co. computationally investigated the MPD3 phytochemical database along with the pool of reported natural antiviral compounds to be used against SARS-CoV-2 [16]. Pedretti and co., exploiting the availability of resolved structures, designed a structure-based computational approach. The innovative idea of their study was to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns [17]. In the context of antiviral drugs, Regad and co. investigated the emergence of HIV-2 resistance. They proposed a structural analysis of 31 drug-resistant mutants of HIV-2 protease (PR2), an important target against HIV-2 infection [18]. A wide series of contributions regarding the use of QSAR, machine learning, and deep learning has reported interesting outcomes. A multiple-molecule drug design based on systems biology approaches and a deep neural network to mitigate human skin aging was developed by Yeh and co. With the proposed systems medicine design procedure, they not only shed light on the skin-aging molecular progression mechanisms, but they also suggested two multiple-molecule drugs to mitigate human skin aging [19]. The construction of quantitative structure–activity relationship (QSAR) models was used to predict the biological activities of the compounds obtained with virtual screening and identify new selective chemical entities for the COX-2 enzyme [20]. The three-dimensional QSAR model, employing a common-features pharmacophore as an alignment rule, was built on 20 highly active/selective HDAC1 inhibitors. The predictive power of the 3D QSAR model represents a useful filtering tool for screening large chemical databases, finding novel derivatives with improved HDAC1 inhibitory activity [21]. Different machine learning (ML) and deep learning (DL) algorithms using various integer and binary type fingerprints were evaluated to develop quantitative structure–activity relationship (QSAR) models, which are important for hERG potassium channel blocker prediction [22]. Throughout this Special Issue, all the recent aspects of the computational approaches applied to several research fields are reported. We express our deep gratitude to all the contributors to this Special Issue for their commitment, hard work, and outstanding papers. We also thank all the reviewers involved in the manuscript revisions for their unpaid contributions to improve any aspects of the submitted works. Last but not least, we deeply thank Mrs. Jessie Zhang for her assistance during the period in which we served as guest editors

    Nature as a treasure trove of potential anti-SARS-CoV drug leads:a structural/mechanistic rationale

    Get PDF
    The novel Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is a potential factor for fatal illness and a tremendous concern for global public health. The COVID-19 pandemic has entered a dangerous new phase. In the context of drug discovery, the structurally-unique and chemically-diverse natural products have been valuable sources for drug leads. In this review, we report for potential candidates derived from natural sources with well-reported in vitro efficacy against SARS-CoV during the last decade. Additionally, a library of 496 phenolic metabolites was subjected to a computer-aided virtual screening against the active site of the recently reported SARS-CoV Main protease (M(pro)). Analysis of physicochemical properties of these natural products has been carried out and presented for all the tested phenolic metabolites. Only three of the top candidates, viz. acetylglucopetunidin (31), isoxanthohumol (32) and ellagic acid (33), which are widely available in many edible fruits, obey both Lipinski's and Veber's rules of drug-likeness and thus possess high degrees of predicted bioavailability. These natural products are suggested as potential drug candidates for the development of anti-SARS-CoV-2 therapeutics in the near future

    Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (M\u3csup\u3epro\u3c/sup\u3e)

    Get PDF
    The rapid spread of the coronavirus disease 2019 (COVID-19) resulted in serious health, social, and economic consequences. While the development of effective vaccines substantially reduced the severity of symptoms and the associated deaths, we still urgently need effective drugs to further reduce the number of casualties associated with SARS-CoV-2 infections. Machine learning methods both improved and sped up all the different stages of the drug discovery processes by performing complex analyses with enormous datasets. Natural products (NPs) have been used for treating diseases and infections for thousands of years and represent a valuable resource for drug discovery when combined with the current computation advancements. Here, a dataset of 406,747 unique NPs was screened against the SARS-CoV-2 main protease (Mpro) crystal structure (6lu7) using a combination of ligand- and structural-based virtual screening. Based on 1) the predicted binding affinities of the NPs to the Mpro, 2) the types and number of interactions with the Mpro amino acids that are critical for its function, and 3) the desirable pharmacokinetic properties of the NPs, we identified the top 20 candidates that could potentially inhibit the Mpro protease function. A total of 7 of the 20 top candidates were subjected to in vitro protease inhibition assay and 4 of them (4/7; 57%), including two beta carbolines, one N-alkyl indole, and one Benzoic acid ester, had significant inhibitory activity against Mpro protease. These four NPs could be developed further for the treatment of COVID-19 symptoms

    In Silico Design and Selection of CD44 Antagonists:implementation of computational methodologies in drug discovery and design

    Get PDF
    Drug discovery (DD) is a process that aims to identify drug candidates through a thorough evaluation of the biological activity of small molecules or biomolecules. Computational strategies (CS) are now necessary tools for speeding up DD. Chapter 1 describes the use of CS throughout the DD process, from the early stages of drug design to the use of artificial intelligence for the de novo design of therapeutic molecules. Chapter 2 describes an in-silico workflow for identifying potential high-affinity CD44 antagonists, ranging from structural analysis of the target to the analysis of ligand-protein interactions and molecular dynamics (MD). In Chapter 3, we tested the shape-guided algorithm on a dataset of macrocycles, identifying the characteristics that need to be improved for the development of new tools for macrocycle sampling and design. In Chapter 4, we describe a detailed reverse docking protocol for identifying potential 4-hydroxycoumarin (4-HC) targets. The strategy described in this chapter is easily transferable to other compounds and protein datasets for overcoming bottlenecks in molecular docking protocols, particularly reverse docking approaches. Finally, Chapter 5 shows how computational methods and experimental results can be used to repurpose compounds as potential COVID-19 treatments. According to our findings, the HCV drug boceprevir could be clinically tested or used as a lead molecule to develop compounds that target COVID-19 or other coronaviral infections. These chapters, in summary, demonstrate the importance, application, limitations, and future of computational methods in the state-of-the-art drug design process
    • …
    corecore