5,717 research outputs found

    Multiple feature-enhanced SAR imaging using sparsity in combined dictionaries

    Get PDF
    Nonquadratic regularization-based image formation is a recently proposed framework for feature-enhanced radar imaging. Specific image formation techniques in this framework have so far focused on enhancing one type of feature, such as strong point scatterers, or smooth regions. However, many scenes contain a number of such feature types. We develop an image formation technique that simultaneously enhances multiple types of features by posing the problem as one of sparse representation based on combined dictionaries. This method is developed based on the sparse representation of the magnitude of the scattered complex-valued field, composed of appropriate dictionaries associated with different types of features. The multiple feature-enhanced reconstructed image is then obtained through a joint optimization problem over the combined representation of the magnitude and the phase of the underlying field reflectivities

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    SAR moving target imaging using group sparsity

    Get PDF
    SAR imaging of scenes containing moving targets results in defocusing in the reconstructed images if the SAR observation model used in imaging does not take the motion into account. SAR data from a scene with motion can be viewed as data from a stationary scene, but with phase errors due to motion. Based on this perspective, we formulate the moving target SAR imaging problem as one of joint imaging and phase error compensation. Based on the assumption that only a small percentage of the entire scene contains moving targets, phase errors exhibit a group sparse nature, when the entire data for all the points in the scene are handled together. Considering this structure of motion-related phase errors and that many scenes of interest admit sparse representation in SAR imaging, we solve this joint problem by minimizing a cost function which involves two nonquadratic regularization terms one of which is used to enforce the sparsity of the reflectivity field to be imaged and the other is used to exploit the group sparse nature of the phase errors
    • …
    corecore