41 research outputs found

    A False-alarm-controllable Modified AdaBoost Wake Detection Method Using SAR Images

    Get PDF
    A false-alarm-controllable modified AdaBoost-based method is proposed for detecting ship wake from sea clutter in synthetic aperture radar (SAR) images. It reformulates the wake detection problem as a binary classification task in the multifeature space. The update strategy of the sample weights in the original AdaBoost is modified for wake detection. First, a detection result confidence factor is designed to deal with class imbalance between sea clutter and ship wake; then, the AdaBoost is further modified as a false alarm rate (FAR) controllable detector by introducing penalty parameters to adjust weights update strategies for the sea clutter. Meanwhile, the multifeature space is spanned by a novel frequency peak height ratio (FPHA) feature and four salient features. FPHA is proposed to enhance the separation between the wake and sea clutter, which is computed from the amplitude spectrum peak of the image after the Fourier transform. Experimental results show that the proposed detector can tackle the imbalanced data problem and flexibly control FAR by adjusting penalty parameters. Moreover, improved detection probability is also achieved compared with existing methods

    A Comparative Assessment of Machine-Learning Techniques for Forest Degradation Caused by Selective Logging in an Amazon Region Using Multitemporal X-Band SAR Images.

    Get PDF
    Abstract: The near-real-time detection of selective logging in tropical forests is essential to support actions for reducing CO2 emissions and for monitoring timber extraction from forest concessions in tropical regions. Current operating systems rely on optical data that are constrained by persistent cloud-cover conditions in tropical regions. Synthetic aperture radar data represent an alternative to this technical constraint. This study aimed to evaluate the performance of three machine learning algorithms applied to multitemporal pairs of COSMO-SkyMed images to detect timber exploitation in a forest concession located in the Jamari National Forest, Rondônia State, Brazilian Amazon. The studied algorithms included random forest (RF), AdaBoost (AB), and multilayer perceptron artificial neural network (MLP-ANN). The geographical coordinates (latitude and longitude) of logged trees and the LiDAR point clouds before and after selective logging were used as ground truths. The best results were obtained when the MLP-ANN was applied with 50 neurons in the hidden layer, using the ReLu activation function and SGD weight optimizer, presenting 88% accuracy both for the pair of images used for training (images acquired in June and October) of the network and in the generalization test, applied on a second dataset (images acquired in January and June). This study showed that X-band SAR images processed by applying machine learning techniques can be accurately used for detecting selective logging activities in the Brazilian Amazon

    A Comparative Assessment of Machine-Learning Techniques for Forest Degradation Caused by Selective Logging in an Amazon Region Using Multitemporal X-Band SAR Images

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-08-19, pub-electronic 2021-08-24Publication status: PublishedThe near-real-time detection of selective logging in tropical forests is essential to support actions for reducing CO2 emissions and for monitoring timber extraction from forest concessions in tropical regions. Current operating systems rely on optical data that are constrained by persistent cloud-cover conditions in tropical regions. Synthetic aperture radar data represent an alternative to this technical constraint. This study aimed to evaluate the performance of three machine learning algorithms applied to multitemporal pairs of COSMO-SkyMed images to detect timber exploitation in a forest concession located in the Jamari National Forest, Rondônia State, Brazilian Amazon. The studied algorithms included random forest (RF), AdaBoost (AB), and multilayer perceptron artificial neural network (MLP-ANN). The geographical coordinates (latitude and longitude) of logged trees and the LiDAR point clouds before and after selective logging were used as ground truths. The best results were obtained when the MLP-ANN was applied with 50 neurons in the hidden layer, using the ReLu activation function and SGD weight optimizer, presenting 88% accuracy both for the pair of images used for training (images acquired in June and October) of the network and in the generalization test, applied on a second dataset (images acquired in January and June). This study showed that X-band SAR images processed by applying machine learning techniques can be accurately used for detecting selective logging activities in the Brazilian Amazon

    Causal SAR ATR with Limited Data via Dual Invariance

    Full text link
    Synthetic aperture radar automatic target recognition (SAR ATR) with limited data has recently been a hot research topic to enhance weak generalization. Despite many excellent methods being proposed, a fundamental theory is lacked to explain what problem the limited SAR data causes, leading to weak generalization of ATR. In this paper, we establish a causal ATR model demonstrating that noise NN that could be blocked with ample SAR data, becomes a confounder with limited data for recognition. As a result, it has a detrimental causal effect damaging the efficacy of feature XX extracted from SAR images, leading to weak generalization of SAR ATR with limited data. The effect of NN on feature can be estimated and eliminated by using backdoor adjustment to pursue the direct causality between XX and the predicted class YY. However, it is difficult for SAR images to precisely estimate and eliminated the effect of NN on XX. The limited SAR data scarcely powers the majority of existing optimization losses based on empirical risk minimization (ERM), thus making it difficult to effectively eliminate NN's effect. To tackle with difficult estimation and elimination of NN's effect, we propose a dual invariance comprising the inner-class invariant proxy and the noise-invariance loss. Motivated by tackling change with invariance, the inner-class invariant proxy facilitates precise estimation of NN's effect on XX by obtaining accurate invariant features for each class with the limited data. The noise-invariance loss transitions the ERM's data quantity necessity into a need for noise environment annotations, effectively eliminating NN's effect on XX by cleverly applying the previous NN's estimation as the noise environment annotations. Experiments on three benchmark datasets indicate that the proposed method achieves superior performance

    Deep Learning based Vehicle Detection in Aerial Imagery

    Get PDF
    Der Einsatz von luftgestützten Plattformen, die mit bildgebender Sensorik ausgestattet sind, ist ein wesentlicher Bestandteil von vielen Anwendungen im Bereich der zivilen Sicherheit. Bekannte Anwendungsgebiete umfassen unter anderem die Entdeckung verbotener oder krimineller Aktivitäten, Verkehrsüberwachung, Suche und Rettung, Katastrophenhilfe und Umweltüberwachung. Aufgrund der großen Menge zu verarbeitender Daten und der daraus resultierenden kognitiven Überbelastung ist jedoch eine Analyse der Luftbilddaten ausschließlich durch menschliche Auswerter in der Praxis nicht anwendbar. Zur Unterstützung der menschlichen Auswerter kommen daher in der Regel automatische Bild- und Videoverarbeitungsalgorithmen zum Einsatz. Eine zentrale Aufgabe bildet dabei eine zuverlässige Detektion relevanter Objekte im Sichtfeld der Kamera, bevor eine Interpretation der gegebenen Szene stattfinden kann. Die geringe Bodenauflösung aufgrund der großen Distanz zwischen Kamera und Erde macht die Objektdetektion in Luftbilddaten zu einer herausfordernden Aufgabe, welche durch Bewegungsunschärfe, Verdeckungen und Schattenwurf zusätzlich erschwert wird. Obwohl in der Literatur eine Vielzahl konventioneller Ansätze zur Detektion von Objekten in Luftbilddaten existiert, ist die Detektionsgenauigkeit durch die Repräsentationsfähigkeit der verwendeten manuell entworfenen Merkmale beschränkt. Im Rahmen dieser Arbeit wird ein neuer Deep-Learning basierter Ansatz zur Detektion von Objekten in Luftbilddaten präsentiert. Der Fokus der Arbeit liegt dabei auf der Detektion von Fahrzeugen in Luftbilddaten, die senkrecht von oben aufgenommen wurden. Grundlage des entwickelten Ansatzes bildet der Faster R-CNN Detektor, der im Vergleich zu anderen Deep-Learning basierten Detektionsverfahren eine höhere Detektionsgenauigkeit besitzt. Da Faster R-CNN wie auch die anderen Deep-Learning basierten Detektionsverfahren auf Benchmark Datensätzen optimiert wurden, werden in einem ersten Schritt notwendige Anpassungen an die Eigenschaften der Luftbilddaten, wie die geringen Abmessungen der zu detektierenden Fahrzeuge, systematisch untersucht und daraus resultierende Probleme identifiziert. Im Hinblick auf reale Anwendungen sind hier vor allem die hohe Anzahl fehlerhafter Detektionen durch fahrzeugähnliche Strukturen und die deutlich erhöhte Laufzeit problematisch. Zur Reduktion der fehlerhaften Detektionen werden zwei neue Ansätze vorgeschlagen. Beide Ansätze verfolgen dabei das Ziel, die verwendete Merkmalsrepräsentation durch zusätzliche Kontextinformationen zu verbessern. Der erste Ansatz verfeinert die räumlichen Kontextinformationen durch eine Kombination der Merkmale von frühen und tiefen Schichten der zugrundeliegenden CNN Architektur, so dass feine und grobe Strukturen besser repräsentiert werden. Der zweite Ansatz macht Gebrauch von semantischer Segmentierung um den semantischen Informationsgehalt zu erhöhen. Hierzu werden zwei verschiedene Varianten zur Integration der semantischen Segmentierung in das Detektionsverfahren realisiert: zum einen die Verwendung der semantischen Segmentierungsergebnisse zur Filterung von unwahrscheinlichen Detektionen und zum anderen explizit durch Verschmelzung der CNN Architekturen zur Detektion und Segmentierung. Sowohl durch die Verfeinerung der räumlichen Kontextinformationen als auch durch die Integration der semantischen Kontextinformationen wird die Anzahl der fehlerhaften Detektionen deutlich reduziert und somit die Detektionsgenauigkeit erhöht. Insbesondere der starke Rückgang von fehlerhaften Detektionen in unwahrscheinlichen Bildregionen, wie zum Beispiel auf Gebäuden, zeigt die erhöhte Robustheit der gelernten Merkmalsrepräsentationen. Zur Reduktion der Laufzeit werden im Rahmen der Arbeit zwei alternative Strategien verfolgt. Die erste Strategie ist das Ersetzen der zur Merkmalsextraktion standardmäßig verwendeten CNN Architektur mit einer laufzeitoptimierten CNN Architektur unter Berücksichtigung der Eigenschaften der Luftbilddaten, während die zweite Strategie ein neues Modul zur Reduktion des Suchraumes umfasst. Mit Hilfe der vorgeschlagenen Strategien wird die Gesamtlaufzeit sowie die Laufzeit für jede Komponente des Detektionsverfahrens deutlich reduziert. Durch Kombination der vorgeschlagenen Ansätze kann sowohl die Detektionsgenauigkeit als auch die Laufzeit im Vergleich zur Faster R-CNN Baseline signifikant verbessert werden. Repräsentative Ansätze zur Fahrzeugdetektion in Luftbilddaten aus der Literatur werden quantitativ und qualitativ auf verschiedenen Datensätzen übertroffen. Des Weiteren wird die Generalisierbarkeit des entworfenen Ansatzes auf ungesehenen Bildern von weiteren Luftbilddatensätzen mit abweichenden Eigenschaften demonstriert

    Banknote Authentication and Medical Image Diagnosis Using Feature Descriptors and Deep Learning Methods

    Get PDF
    Banknote recognition and medical image analysis have been the foci of image processing and pattern recognition research. As counterfeiters have taken advantage of the innovation in print media technologies for reproducing fake monies, hence the need to design systems which can reassure and protect citizens of the authenticity of banknotes in circulation. Similarly, many physicians must interpret medical images. But image analysis by humans is susceptible to error due to wide variations across interpreters, lethargy, and human subjectivity. Computer-aided diagnosis is vital to improvements in medical analysis, as they facilitate the identification of findings that need treatment and assist the expert’s workflow. Thus, this thesis is organized around three such problems related to Banknote Authentication and Medical Image Diagnosis. In our first research problem, we proposed a new banknote recognition approach that classifies the principal components of extracted HOG features. We further experimented on computing HOG descriptors from cells created from image patch vertices of SURF points and designed a feature reduction approach based on a high correlation and low variance filter. In our second research problem, we developed a mobile app for banknote identification and counterfeit detection using the Unity 3D software and evaluated its performance based on a Cascaded Ensemble approach. The algorithm was then extended to a client-server architecture using SIFT and SURF features reduced by Bag of Words and high correlation-based HOG vectors. In our third research problem, experiments were conducted on a pre-trained mobile app for medical image diagnosis using three convolutional layers with an Ensemble Classifier comprising PCA and bagging of five base learners. Also, we implemented a Bidirectional Generative Adversarial Network to mitigate the effect of the Binary Cross Entropy loss based on a Deep Convolutional Generative Adversarial Network as the generator and encoder with Capsule Network as the discriminator while experimenting on images with random composition and translation inferences. Lastly, we proposed a variant of the Single Image Super-resolution for medical analysis by redesigning the Super Resolution Generative Adversarial Network to increase the Peak Signal to Noise Ratio during image reconstruction by incorporating a loss function based on the mean square error of pixel space and Super Resolution Convolutional Neural Network layers

    Deep Learning based Vehicle Detection in Aerial Imagery

    Get PDF
    This book proposes a novel deep learning based detection method, focusing on vehicle detection in aerial imagery recorded in top view. The base detection framework is extended by two novel components to improve the detection accuracy by enhancing the contextual and semantical content of the employed feature representation. To reduce the inference time, a lightweight CNN architecture is proposed as base architecture and a novel module that restricts the search area is introduced

    Nonlinear Classifier Stacking on Riemannian and Grassmann Manifolds with Application to Video Analysis

    Get PDF
    This research is devoted to the problem of overfitting in Machine Learning and Pattern Recognition. It should lead to improving the generalisation ability and accuracy boosting in the case of small and/or difficult classification datasets. The aforementioned two problems have been solved in two different ways: by splitting the entire datasets into functional groups depending on the classification difficulty using consensus of classifiers, and by embedding the data obtained during classifier stacking into nonlinear spaces i.e. Riemannian and Grassmann manifolds. These two techniques are the main contributions of the thesis. The insight behind the first approach is that we are not going to use the entire training subset to train our classifiers but some part of it in order to approximate the true geometry and properties of classes. In terms of Data Science, this process can also be understood as Data Cleaning. According to the first approach, instances with high positive (easy) and negative (misclassified) margins are not considered for training as those that do not improve (or even worsen) the evaluation of the true geometry of classes. The main goal of using Riemannian geometry consists of embedding our classes in nonlinear spaces where the geometry of classes in terms of easier classification has to be obtained. Before embedding our classes on Riemannian and Grassmann manifolds we do several Data Transformations using different variants of Classifier Stacking. Riemannian manifolds of Symmetric Positive Definite matrices are created using the classifier interactions while Grassmann manifolds are built based on Decision Profiles. The purpose of the two aforementioned approaches is Data Complexity reduction. There is a consensus among researchers, that Data Complexity reduction should lead to an overfitting decrease as well as to classification accuracy enhancement. We carried out our experiments on various datasets from the UCI Machine Learning repository. We also tested our approaches on two datasets related to the Video Analysis problem. The first dataset is a Phase Gesture Segmentation dataset taken from the UCI Machine Learning repository. The second one is the Deep Fake detection Challenge dataset. In order to apply our approach to solve the second problem, some image processing has been carried out. Numerous experiments on datasets of general character and those related to Video Analysis problems show the consistency and efficiency of the proposed techniques. We also compared our techniques with the state-of-the-art techniques. The obtained results show the superiority of our approaches for most of the cases. The significance of carried out research and obtained results manifests in better representation and evaluation of the geometry of classes which may overlap only in feature space due to some improper measurements, errors, noises, or by selecting features that do not represent well our classes. Carried out research is a pioneering in terms of Data Cleaning and Classifier Ensemble Learning in Riemannian geometry

    DNN-based PolSAR image classification on noisy labels

    Get PDF
    Deep neural networks (DNNs) appear to be a solution for the classification of polarimetric synthetic aperture radar (PolSAR) data in that they outperform classical supervised classifiers under the condition of sufficient training samples. The design of a classifier is challenging because DNNs can easily overfit due to limited remote sensing training samples and unavoidable noisy labels. In this article, a softmax loss strategy with antinoise capability, namely, the probability-aware sample grading strategy (PASGS), is developed to overcome this limitation. Combined with the proposed softmax loss strategy, two classical DNN-based classifiers are implemented to perform PolSAR image classification to demonstrate its effectiveness. In this framework, the difference distribution implicitly reflects the probability that a training sample is clean, and clean labels can be distinguished from noisy labels according to the method of probability statistics. Then, this probability is employed to reweight the corresponding loss of each training sample during the training process to locate the noisy data and to prevent participation in the loss calculation of the neural network. As the number of training iterations increases, the condition of the probability statistics of the noisy labels will be constantly adjusted without supervision, and the clean labels will eventually be identified to train the neural network. Experiments on three PolSAR datasets with two DNN-based methods also demonstrate that the proposed method is superior to state-of-the-art methods.This work was supported in part by the National Natural Science Foundation of China under Grant 61871413 and Grant 61801015, in part by the Fundamental Research Funds for the Central Universities under Grant XK2020-03, in part by China Scholarship Council under Grant 2020006880033, and in part by Grant PID2020-114623RB-C32 funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version
    corecore