41 research outputs found

    Manipulation and generation of synthetic satellite images using deep learning models

    Get PDF
    Generation and manipulation of digital images based on deep learning (DL) are receiving increasing attention for both benign and malevolent uses. As the importance of satellite imagery is increasing, DL has started being used also for the generation of synthetic satellite images. However, the direct use of techniques developed for computer vision applications is not possible, due to the different nature of satellite images. The goal of our work is to describe a number of methods to generate manipulated and synthetic satellite images. To be specific, we focus on two different types of manipulations: full image modification and local splicing. In the former case, we rely on generative adversarial networks commonly used for style transfer applications, adapting them to implement two different kinds of transfer: (i) land cover transfer, aiming at modifying the image content from vegetation to barren and vice versa and (ii) season transfer, aiming at modifying the image content from winter to summer and vice versa. With regard to local splicing, we present two different architectures. The first one uses image generative pretrained transformer and is trained on pixel sequences in order to predict pixels in semantically consistent regions identified using watershed segmentation. The second technique uses a vision transformer operating on image patches rather than on a pixel by pixel basis. We use the trained vision transformer to generate synthetic image segments and splice them into a selected region of the to-be-manipulated image. All the proposed methods generate highly realistic, synthetic, and satellite images. Among the possible applications of the proposed techniques, we mention the generation of proper datasets for the evaluation and training of tools for the analysis of satellite images. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI

    An Overview on the Generation and Detection of Synthetic and Manipulated Satellite Images

    Get PDF
    Due to the reduction of technological costs and the increase of satellites launches, satellite images are becoming more popular and easier to obtain. Besides serving benevolent purposes, satellite data can also be used for malicious reasons such as misinformation. As a matter of fact, satellite images can be easily manipulated relying on general image editing tools. Moreover, with the surge of Deep Neural Networks (DNNs) that can generate realistic synthetic imagery belonging to various domains, additional threats related to the diffusion of synthetically generated satellite images are emerging. In this paper, we review the State of the Art (SOTA) on the generation and manipulation of satellite images. In particular, we focus on both the generation of synthetic satellite imagery from scratch, and the semantic manipulation of satellite images by means of image-transfer technologies, including the transformation of images obtained from one type of sensor to another one. We also describe forensic detection techniques that have been researched so far to classify and detect synthetic image forgeries. While we focus mostly on forensic techniques explicitly tailored to the detection of AI-generated synthetic contents, we also review some methods designed for general splicing detection, which can in principle also be used to spot AI manipulate imagesComment: 25 pages, 17 figures, 5 tables, APSIPA 202

    Learning to Generate SAR Images with Adversarial Autoencoder

    Get PDF
    Deep learning-based synthetic aperture radar (SAR) target recognition often suffers from sparsely distributed training samples and rapid angular variations due to scattering scintillation. Thus, data-driven SAR target recognition is considered a typical few-shot learning (FSL) task. This paper first reviews the key issues of FSL and provides a definition of the FSL task. A novel adversarial autoencoder (AAE) is then proposed as a SAR representation and generation network. It consists of a generator network that decodes target knowledge to SAR images and an adversarial discriminator network that not only learns to discriminate “fake” generated images from real ones but also encodes the input SAR image back to a target knowledge. The discriminator employs progressively expanding convolution layers and a corresponding layer-by-layer training strategy. It uses two cyclic loss functions to enforce consistency between the inputs and outputs. Moreover, rotated cropping is introduced as a mechanism to address the challenge of representing the target orientation. The MSTAR 7-target dataset is used to evaluate the AAE’s performance, and the results demonstrate its ability to generate SAR images with aspect angular diversity. Using only 90 training samples with at least 25 degrees of orientation interval, the trained AAE is able to generate the remaining 1,748 samples of other orientation angles with an unprecedented level of fidelity. Thus, it can be used for data augmentation in SAR target recognition FSL tasks. Our experimental results show that the AAE could boost the test accuracy by 5.77%

    SAR-NeRF: Neural Radiance Fields for Synthetic Aperture Radar Multi-View Representation

    Full text link
    SAR images are highly sensitive to observation configurations, and they exhibit significant variations across different viewing angles, making it challenging to represent and learn their anisotropic features. As a result, deep learning methods often generalize poorly across different view angles. Inspired by the concept of neural radiance fields (NeRF), this study combines SAR imaging mechanisms with neural networks to propose a novel NeRF model for SAR image generation. Following the mapping and projection pinciples, a set of SAR images is modeled implicitly as a function of attenuation coefficients and scattering intensities in the 3D imaging space through a differentiable rendering equation. SAR-NeRF is then constructed to learn the distribution of attenuation coefficients and scattering intensities of voxels, where the vectorized form of 3D voxel SAR rendering equation and the sampling relationship between the 3D space voxels and the 2D view ray grids are analytically derived. Through quantitative experiments on various datasets, we thoroughly assess the multi-view representation and generalization capabilities of SAR-NeRF. Additionally, it is found that SAR-NeRF augumented dataset can significantly improve SAR target classification performance under few-shot learning setup, where a 10-type classification accuracy of 91.6\% can be achieved by using only 12 images per class

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Learning with Constraint Learning: New Perspective, Solution Strategy and Various Applications

    Full text link
    The complexity of learning problems, such as Generative Adversarial Network (GAN) and its variants, multi-task and meta-learning, hyper-parameter learning, and a variety of real-world vision applications, demands a deeper understanding of their underlying coupling mechanisms. Existing approaches often address these problems in isolation, lacking a unified perspective that can reveal commonalities and enable effective solutions. Therefore, in this work, we proposed a new framework, named Learning with Constraint Learning (LwCL), that can holistically examine challenges and provide a unified methodology to tackle all the above-mentioned complex learning and vision problems. Specifically, LwCL is designed as a general hierarchical optimization model that captures the essence of these diverse learning and vision problems. Furthermore, we develop a gradient-response based fast solution strategy to overcome optimization challenges of the LwCL framework. Our proposed framework efficiently addresses a wide range of applications in learning and vision, encompassing three categories and nine different problem types. Extensive experiments on synthetic tasks and real-world applications verify the effectiveness of our approach. The LwCL framework offers a comprehensive solution for tackling complex machine learning and computer vision problems, bridging the gap between theory and practice
    corecore