506 research outputs found

    ARKTOS: An Intelligent System for Satellite Sea Ice Image Analysis

    Get PDF
    We present an intelligent system for satellite sea ice image analysis named ARKTOS (Advanced Reasoning using Knowledge for Typing Of Sea ice). The underlying methodology of ARKTOS is to perform fully automated analysis of sea ice images by mimicking the reasoning process of sea ice experts and photo-interpreters. Hence, our approach is feature-based, rule-based classification supported by multisource data fusion and knowledge bases. A feature can be an ice floe, for example. ARKTOS computes a host of descriptors for that feature and then applies expert rules to classify the floe into one of several ice classes. ARKTOS also incorporates information derived from other sources, fusing different data towards more accurate classification. This modular, flexible, and extensible approach allows ARKTOS be refined and evaluated by expert users. As a software package, ARKTOS comprises components in image processing, rule-based classification, multisource data fusion, and GUI-based knowledge engineering and modification. As a research project over the past 10 years, ARKTOS has undergone phases such as knowledge acquisition, prototyping, refinement, evaluation and deployment, and finally operationalization at the National Ice Center (NIC). In this paper, we will focus on the methodology of ARKTOS

    ARKTOS: An intelligent system for SAR sea ice image classification

    Get PDF
    ©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.We present an intelligent system for satellite sea ice image analysis named Advanced Reasoning using Knowledge for T ping Of Sea ice (ARKTOS). ARKTOS performs fully automated analysis of synthetic aperture radar (SAR) sea ice images by mimicking the reasoning process of sea ice experts. ARKTOS automatically segments a SAR image of sea ice, generates descriptors for the segments of the image, and then uses expert system rules to classify these sea ice features. ARKTOS also utilizes multisource data fusion to improve classification and performs belief handling using Dempster-Shafer. As a software package, ARKTOS comprises components in image processing, rule-based classification, multisource data fusion, and graphical user interface-based knowledge engineering and modification. As a research project over the past ten years, ARKTOS has undergone phases such as knowledge acquisition, prototyping, refinement, evaluation, deployment, and operationalization at the U.S. National Ice Center. In this paper, we focus on the methodology, evaluations, and classification results of ARKTOS

    Illumination and Noise-Based Scene Classification - Application to SAR Sea Ice Imagery

    Get PDF
    Spatial intensity variation introduced by illumination changes is a challenging problem for image segmentation and classification. Many techniques have been proposed which focus on removing this illumination variation by estimating or modelling it. There is limited research on developing an illumination invariant classification technique which does not use any preprocessing. A major focus of this research is on automatically classifying synthetic aperture radar (SAR) images. These are large satellite images which pose many challenges for image classification including the incidence angle effect which is a strong illumination variation across the image. Mapping of full scene satellite images of sea-ice is important for navigational purposes for ships and also for climate research. The images obtained from the RADARSAT-2 satellite are dual band, high quality images. Currently, sea ice chart are produced manually by ice analysts at the Canadian Ice Service. However, this process can be automated to reduce processing time and obtain more detailed pixel-level ice maps. An automated classification algorithm to achieve sea ice and open water separation will greatly help the ice analyst by providing sufficient guidance in the initial stages of creating an ice map. It would also help the analyst to improve the accuracy while finding ice concentrations and remove subjective bias. The existing Iterative Region Growing by Semantics (IRGS) algorithm is not effective for full scene segmentation because of the incidence angle effect. This research proposes a "glocal" (global as well as local) approach to solve this problem. The image is divided in a rectangular grid and each rectangle is segmented using IRGS. This is viewed as an over-segmentation of the original image. Finally, IRGS is used globally to glue together the over-segmented regions. This method yields acceptable results with the denoised images. The proposed technique can also be used for general image classification purposes. Extensive testing was done to investigate the best set of parameters for the proposed approach. Images were simulated with the SAR illumination variation and multiplicative speckle noise. The technique was effective for general classification and attained accurate results for full scene SAR segmentation

    Automated Remote Sensing Image Interpretation with Limited Labeled Training Data

    Get PDF
    Automated remote sensing image interpretation has been investigated for more than a decade. In early years, most work was based on the assumption that there are sufficient labeled samples to be used for training. However, ground-truth collection is a very tedious and time-consuming task and sometimes very expensive, especially in the field of remote sensing that usually relies on field surveys to collect ground truth. In recent years, as the development of advanced machine learning techniques, remote sensing image interpretation with limited ground-truth has caught the attention of researchers in the fields of both remote sensing and computer science. Three approaches that focus on different aspects of the interpretation process, i.e., feature extraction, classification, and segmentation, are proposed to deal with the limited ground truth problem. First, feature extraction techniques, which usually serve as a pre-processing step for remote sensing image classification are explored. Instead of only focusing on feature extraction, a joint feature extraction and classification framework is proposed based on ensemble local manifold learning. Second, classifiers in the case of limited labeled training data are investigated, and an enhanced ensemble learning method that outperforms state-of-the-art classification methods is proposed. Third, image segmentation techniques are investigated, with the aid of unlabeled samples and spatial information. A semi-supervised self-training method is proposed, which is capable of expanding the number of training samples by its own and hence improving classification performance iteratively. Experiments show that the proposed approaches outperform state-of-the-art techniques in terms of classification accuracy on benchmark remote sensing datasets.4 month

    Classification of Compact Polarimetric Synthetic Aperture Radar Images

    Get PDF
    The RADARSAT Constellation Mission (RCM) was launched in June 2019. RCM, in addition to dual-polarization (DP) and fully quad-polarimetric (QP) imaging modes, provides compact polarimetric (CP) mode data. A CP synthetic aperture radar (SAR) is a coherent DP system in which a single circular polarization is transmitted followed by the reception in two orthogonal linear polarizations. A CP SAR fully characterizes the backscattered field using the Stokes parameters, or equivalently, the complex coherence matrix. This is the main advantage of a CP SAR over the traditional (non-coherent) DP SAR. Therefore, designing scene segmentation and classification methods using CP complex coherence matrix data is advocated in this thesis. Scene classification of remotely captured images is an important task in monitoring the Earth's surface. The high-resolution RCM CP SAR data can be used for land cover classification as well as sea-ice mapping. Mapping sea ice formed in ocean bodies is important for ship navigation and climate change modeling. The Canadian Ice Service (CIS) has expert ice analysts who manually generate sea-ice maps of Arctic areas on a daily basis. An automated sea-ice mapping process that can provide detailed yet reliable maps of ice types and water is desirable for CIS. In addition to linear DP SAR data in ScanSAR mode (500km), RCM wide-swath CP data (350km) can also be used in operational sea-ice mapping of the vast expanses in the Arctic areas. The smaller swath coverage of QP SAR data (50km) is the reason why the use of QP SAR data is limited for sea-ice mapping. This thesis involves the design and development of CP classification methods that consist of two steps: an unsupervised segmentation of CP data to identify homogeneous regions (superpixels) and a labeling step where a ground truth label is assigned to each super-pixel. An unsupervised segmentation algorithm is developed based on the existing Iterative Region Growing using Semantics (IRGS) for CP data and is called CP-IRGS. The constituents of feature model and spatial context model energy terms in CP-IRGS are developed based on the statistical properties of CP complex coherence matrix data. The superpixels generated by CP-IRGS are then used in a graph-based labeling method that incorporates the global spatial correlation among super-pixels in CP data. The classifications of sea-ice and land cover types using test scenes indicate that (a) CP scenes provide improved sea-ice classification than the linear DP scenes, (b) CP-IRGS performs more accurate segmentation than that using only CP channel intensity images, and (c) using global spatial information (provided by a graph-based labeling approach) provides an improvement in classification accuracy values over methods that do not exploit global spatial correlation

    Toward Automated Ice-Water Classification on Large Northern Lakes Using RADARSAT-2 Synthetic Aperture Radar Imagery

    Get PDF
    Changes to ice cover on lakes throughout the northern landscape has been established as an indicator of climate change and variability. These changes are expected to have implications for both human and environmental systems. Additionally, monitoring lake ice cover is required to enable more reliable weather forecasting across lake-rich northern latitudes. Currently the Canadian Ice Service (CIS) monitors lakes using RADARSAT-2 SAR (synthetic aperture radar) and optical imagery through visual interpretation, with total lake ice cover reported weekly as a fraction out of ten. An automated method of classification would allow for more detailed records to be delivered operationally. In this research, the Iterative Region Growing using Semantics (IRGS) approach has been employed to perform ice-water classification on 61 RADARSAT-2 scenes of Great Bear Lake and Great Slave Lake over a three year period. This approach first locally segments homogeneous regions in an image, then merges similar regions into classes across the entire scene. These classes are manually labelled by the user, however automated labelling capability is currently in development. An accuracy assessment has been performed on the classification results, comparing outcomes with user-generated reference data as well as the CIS fraction reported at the time of image acquisition. The overall average accuracy of the IRGS method for this dataset is 92%, demonstrating the potential of this semi-automated method to provide detailed and reliable lake ice cover information

    Automatic Archeological Feature Extraction from Satellite VHR Images

    Get PDF
    Abstract Archaeological applications need a methodological approach on a variable scale able to satisfy the intra-site (excavation) and the inter-site (survey, environmental research). The increased availability of high resolution and micro-scale data has substantially favoured archaeological applications and the consequent use of GIS platforms for reconstruction of archaeological landscapes based on remotely sensed data. Feature extraction of multispectral remotely sensing image is an important task before any further processing. High resolution remote sensing data, especially panchromatic, is an important input for the analysis of various types of image characteristics; it plays an important role in the visual systems for recognition and interpretation of given data. The methods proposed rely on an object-oriented approach based on a theory for the analysis of spatial structures called mathematical morphology. The term ‘‘morphology’’ stems from the fact that it aims at analysing object shapes and forms. It is mathematical in the sense that the analysis is based on the set theory, integral geometry, and lattice algebra. Mathematical morphology has proven to be a powerful image analysis technique; two-dimensional grey tone images are seen as three-dimensional sets by associating each image pixel with an elevation proportional to its intensity level. An object of known shape and size, called the structuring element, is then used to investigate the morphology of the input set. This is achieved by positioning the origin of the structuring element to every possible position of the space and testing, for each position, whether the structuring element either is included or has a nonempty intersection with the studied set. The shape and size of the structuring element must be selected according to the morphology of the searched image structures. Other two feature extraction techniques were used, eCognition and ENVI module SW, in order to compare the results. These techniques were applied to different archaeological sites in Turkmenistan (Nisa) and in Iraq (Babylon); a further change detection analysis was applied to the Babylon site using two HR images as a pre–post second gulf war. We had different results or outputs, taking into consideration the fact that the operative scale of sensed data determines the final result of the elaboration and the output of the information quality, because each of them was sensitive to specific shapes in each input image, we had mapped linear and nonlinear objects, updating archaeological cartography, automatic change detection analysis for the Babylon site. The discussion of these techniques has the objective to provide the archaeological team with new instruments for the orientation and the planning of a remote sensing application. & 2009 Elsevier Ltd. All rights reserved

    Segmentation of RADARSAT-2 Dual-Polarization Sea Ice Imagery

    Get PDF
    The mapping of sea ice is an important task for understanding global climate and for safe shipping. Currently, sea ice maps are created by human analysts with the help of remote sensing imagery, including synthetic aperture radar (SAR) imagery. While the maps are generally correct, they can be somewhat subjective and do not have pixel-level resolution due to the time consuming nature of manual segmentation. Therefore, automated sea ice mapping algorithms such as the multivariate iterative region growing with semantics (MIRGS) sea ice image segmentation algorithm are needed. MIRGS was designed to work with one-channel single-polarization SAR imagery from the RADARSAT-1 satellite. The launch of RADARSAT-2 has made available two-channel dual-polarization SAR imagery for the purposes of sea ice mapping. Dual-polarization imagery provides more information for distinguishing ice types, and one of the channels is less sensitive to changes in the backscatter caused by the SAR incidence angle parameter. In the past, this change in backscatter due to the incidence angle was a key limitation that prevented automatic segmentation of full SAR scenes. This thesis investigates techniques to make use of the dual-polarization data in MIRGS. An evaluation of MIRGS with RADARSAT-2 data was performed and showed that some detail was lost and that the incidence angle caused errors in segmentation. Several data fusion schemes were investigated to determine if they can improve performance. Gradient generation methods designed to take advantage of dual-polarization data, feature space fusion using linear and non-linear transforms as well as image fusion methods based on wavelet combination rules were implemented and tested. Tuning of the MIRGS parameters was performed to find the best set of parameters for segmentation of dual-polarization data. Results show that the standard MIRGS algorithm with default parameters provides the highest accuracy, so no changes are necessary for dual-polarization data. A hierarchical segmentation scheme that segments the dual-polarization channels separately was implemented to overcome the incidence angle errors. The technique is effective but requires more user input than the standard MIRGS algorithm

    Automated Ice-Water Classification using Dual Polarization SAR Imagery

    Get PDF
    Mapping ice and open water in ocean bodies is important for numerous purposes including environmental analysis and ship navigation. The Canadian Ice Service (CIS) currently has several expert ice analysts manually generate ice maps on a daily basis. The CIS would like to augment their current process with an automated ice-water discrimination algorithm capable of operating on dual-pol synthetic aperture radar (SAR) images produced by RADARSAT-2. Automated methods can provide mappings in larger volumes, with more consistency, and in finer resolutions that are otherwise impractical to generate. We have developed such an automated ice-water discrimination system called MAGIC. The algorithm first classifies the HV scene using the glocal method, a hierarchical region-based classification method. The glocal method incorporates spatial context information into the classification model using a modified watershed segmentation and a previously developed MRF classification algorithm called IRGS. Second, a pixel-based support vector machine (SVM) using a nonlinear RBF kernel classification is performed exploiting SAR grey-level co-occurrence matrix (GLCM) texture and backscatter features. Finally, the IRGS and SVM classification results are combined using the IRGS approach but with a modified energy function to accommodate the SVM pixel-based information. The combined classifier was tested on 61 ground truthed dual-pol RADARSAT-2 scenes of the Beaufort Sea containing a variety of ice types and water patterns across melt, summer, and freeze-up periods. The average leave-one-out classification accuracy with respect to these ground truths is 95.8% and MAGIC attains an accuracy of 90% or above on 88% of the scenes. The MAGIC system is now under consideration by CIS for operational use
    • …
    corecore