333 research outputs found

    Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning

    Get PDF
    This study aimed at evaluating the synergistic use of Sentinel-1 and Sentinel-2 data combined with the Support Vector Machines (SVMs) machine learning classifier for mapping land use and land cover (LULC) with emphasis on wetlands. In this context, the added value of spectral information derived from the Principal Component Analysis (PCA), Minimum Noise Fraction (MNF) and Grey Level Co-occurrence Matrix (GLCM) to the classification accuracy was also evaluated. As a case study, the National Park of Koronia and Volvi Lakes (NPKV) located in Greece was selected. LULC accuracy assessment was based on the computation of the classification error statistics and kappa coefficient. Findings of our study exemplified the appropriateness of the spatial and spectral resolution of Sentinel data in obtaining a rapid and cost-effective LULC cartography, and for wetlands in particular. The most accurate classification results were obtained when the additional spectral information was included to assist the classification implementation, increasing overall accuracy from 90.83% to 93.85% and kappa from 0.894 to 0.928. A post-classification correction (PCC) using knowledge-based logic rules further improved the overall accuracy to 94.82% and kappa to 0.936. This study provides further supporting evidence on the suitability of the Sentinels 1 and 2 data for improving our ability to map a complex area containing wetland and non-wetland LULC classes

    Advances in Motion Estimators for Applications in Computer Vision

    Get PDF
    abstract: Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained. The contributions of this dissertation are approaches and frameworks that introduce i) a new optical flow-based interpolation method to achieve minimally divergent velocimetry data, ii) a framework that improves the accuracy of change detection algorithms in synthetic aperture radar (SAR) images, and iii) a set of new methods to integrate Proton Magnetic Resonance Spectroscopy (1HMRSI) data into threedimensional (3D) neuronavigation systems for tumor biopsies. In the first application an optical flow-based approach for the interpolation of minimally divergent velocimetry data is proposed. The velocimetry data of incompressible fluids contain signals that describe the flow velocity. The approach uses the additional flow velocity information to guide the interpolation process towards reduced divergence in the interpolated data. In the second application a framework that mainly consists of optical flow methods and other image processing and computer vision techniques to improve object extraction from synthetic aperture radar images is proposed. The proposed framework is used for distinguishing between actual motion and detected motion due to misregistration in SAR image sets and it can lead to more accurate and meaningful change detection and improve object extraction from a SAR datasets. In the third application a set of new methods that aim to improve upon the current state-of-the-art in neuronavigation through the use of detailed three-dimensional (3D) 1H-MRSI data are proposed. The result is a progressive form of online MRSI-guided neuronavigation that is demonstrated through phantom validation and clinical application.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Operator State Estimation for Adaptive Aiding in Uninhabited Combat Air Vehicles

    Get PDF
    This research demonstrated the first closed-loop implementation of adaptive automation using operator functional state in an operationally relevant environment. In the Uninhabited Combat Air Vehicle (UCAV) environment, operators can become cognitively overloaded and their performance may decrease during mission critical events. This research demonstrates an unprecedented closed-loop system, one that adaptively aids UCAV operators based on their cognitive functional state A series of experiments were conducted to 1) determine the best classifiers for estimating operator functional state, 2) determine if physiological measures can be used to develop multiple cognitive models based on information processing demands and task type, 3) determine the salient psychophysiological measures in operator functional state, and 4) demonstrate the benefits of intelligent adaptive aiding using operator functional state. Aiding the operator actually improved performance and increased mission effectiveness by 67%

    Advances in Object and Activity Detection in Remote Sensing Imagery

    Get PDF
    The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms

    Efficient Data Driven Multi Source Fusion

    Get PDF
    Data/information fusion is an integral component of many existing and emerging applications; e.g., remote sensing, smart cars, Internet of Things (IoT), and Big Data, to name a few. While fusion aims to achieve better results than what any one individual input can provide, often the challenge is to determine the underlying mathematics for aggregation suitable for an application. In this dissertation, I focus on the following three aspects of aggregation: (i) efficient data-driven learning and optimization, (ii) extensions and new aggregation methods, and (iii) feature and decision level fusion for machine learning with applications to signal and image processing. The Choquet integral (ChI), a powerful nonlinear aggregation operator, is a parametric way (with respect to the fuzzy measure (FM)) to generate a wealth of aggregation operators. The FM has 2N variables and N(2N − 1) constraints for N inputs. As a result, learning the ChI parameters from data quickly becomes impractical for most applications. Herein, I propose a scalable learning procedure (which is linear with respect to training sample size) for the ChI that identifies and optimizes only data-supported variables. As such, the computational complexity of the learning algorithm is proportional to the complexity of the solver used. This method also includes an imputation framework to obtain scalar values for data-unsupported (aka missing) variables and a compression algorithm (lossy or losselss) of the learned variables. I also propose a genetic algorithm (GA) to optimize the ChI for non-convex, multi-modal, and/or analytical objective functions. This algorithm introduces two operators that automatically preserve the constraints; therefore there is no need to explicitly enforce the constraints as is required by traditional GA algorithms. In addition, this algorithm provides an efficient representation of the search space with the minimal set of vertices. Furthermore, I study different strategies for extending the fuzzy integral for missing data and I propose a GOAL programming framework to aggregate inputs from heterogeneous sources for the ChI learning. Last, my work in remote sensing involves visual clustering based band group selection and Lp-norm multiple kernel learning based feature level fusion in hyperspectral image processing to enhance pixel level classification

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Efficient Algorithms For Correlation Pattern Recognition

    Get PDF
    The mathematical operation of correlation is a very simple concept, yet has a very rich history of application in a variety of engineering fields. It is essentially nothing but a technique to measure if and to what degree two signals match each other. Since this is a very basic and universal task in a wide variety of fields such as signal processing, communications, computer vision etc., it has been an important tool. The field of pattern recognition often deals with the task of analyzing signals or useful information from signals and classifying them into classes. Very often, these classes are predetermined, and examples (templates) are available for comparison. This task naturally lends itself to the application of correlation as a tool to accomplish this goal. Thus the field of Correlation Pattern Recognition has developed over the past few decades as an important area of research. From the signal processing point of view, correlation is nothing but a filtering operation. Thus there has been a great deal of work in using concepts from filter theory to develop Correlation Filters for pattern recognition. While considerable work has been to done to develop linear correlation filters over the years, especially in the field of Automatic Target Recognition, a lot of attention has recently been paid to the development of Quadratic Correlation Filters (QCF). QCFs offer the advantages of linear filters while optimizing a bank of these simultaneously to offer much improved performance. This dissertation develops efficient QCFs that offer significant savings in storage requirements and computational complexity over existing designs. Firstly, an adaptive algorithm is presented that is able to modify the QCF coefficients as new data is observed. Secondly, a transform domain implementation of the QCF is presented that has the benefits of lower computational complexity and computational requirements while retaining excellent recognition accuracy. Finally, a two dimensional QCF is presented that holds the potential to further save on storage and computations. The techniques are developed based on the recently proposed Rayleigh Quotient Quadratic Correlation Filter (RQQCF) and simulation results are provided on synthetic and real datasets

    Earth Resources: A continuing bibliography with indexes (Issue 37)

    Get PDF
    This bibliography lists 512 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Investigating the feasibility of using remote sensing in index-based crop insurance for South Africa’s smallholder farming systems

    Get PDF
    Crop farming in Sub-Saharan Africa (SSA) is largely practiced by resource-poor farmers under rain-fed and unpredictable weather conditions. Since agriculture is the mainstay of SSA’s economy, the lack of improved and adapted agricultural technologies in this region sets back economic development and the fight against poverty. Overcoming this constraint and achieving the sustainable development goal to end poverty, requires innovative tools that can be used for weather risk management. One tool that has been gaining momentum recently is index-based crop insurance (IBCI). Since the launch of the first IBCI program in Africa around 2005, the number of IBCI programs has increased. Unfortunately, these programs are constrained by poor product design, basis risk, and low uptake of contracts. When these issues were first pointed-out in the earliest IBCI programs, many reports suggested satellite remote sensing (RS) as a viable solution. Hence, the first objective of this study was to assess how RS has been used in IBCI, the challenges RS faces, and potential contributions of RS that have not yet been meaningfully exploited. The literature shows that IBCI programs are increasingly adopting RS. RS has improved demarcation of unit areas of insurance and enabled IBCI to reach inaccessible areas that do not have sufficient meteorological infrastructure. However, the literature also shows that IBCI is still tainted by basis risk, which emanates from poor contract designs, the influence of non-weather factors on crop yields, imperfect correlations between satellite-based indices and crop yields, and the lack of historical data for calibration. Although IBCI reports cover vegetation and crop health monitoring, few to none cover crop type and crop area mapping. Furthermore, areas including high-resolution mapping, data fusion, microwave RS, machine learning, and computer vision have not been sufficiently tested in IBCI. The second objective of this study was to assess how RS and machine learning techniques can be used to enhance the mapping of smallholder crop farming landscapes. The findings show that machine learning ensembles and the combination of optical and microwave data can map a smallholder farming landscape with a maximum accuracy of 97.71 percent. The third objective was to identify factors that influence crop yields and crop losses in order to improve IBCI design. Results demonstrated that the pervasive notion that low yields in smallholder farms are related to rainfall is an oversimplification. Factors including fertilizer use, seed variety, soil properties, soil moisture, growing degree-days, management, and socioeconomic conditions are some of the most important factors influencing crop yields and crop losses in smallholder farming systems. This shows why IBCI needs to be part of a comprehensive risk management system that understands and approaches smallholder crop farming as complex by linking insurance with advisories and input supplies. Improved inputs and good farming practices could reduce the influence of non-weather factors on crop losses, and thereby reduce basis risk in weather-based index insurance (WII) contracts. The fourth objective of this study was to assess how well the combination of synthetic aperture radar (SAR) and optical indices estimate soil moisture. As stated earlier, soil moisture was found to be one of the most important factors affecting crop yields. Although this method better estimated soil moisture over the first half of the growing season, estimation accuracies were comparable to those found in studies that had used similar datasets (RMSE = 0.043 m3 m-3, MAE = 0.034 m3 m- 3). Further interrogation of interaction effects between the variables used in this study and consideration of other factors that affect SAR backscatter could improve the method. More importantly, incorporating high-resolution satellite-based monitoring of soil moisture into IBCI could potentially reduce basis risk. The fifth objective of this study was to develop an IBCI for smallholder crop farming systems. The proposed IBCI scheme covers maize and derives index thresholds from crop water requirements and satellite-based rainfall estimates. It covers rainfall deficits over the vegetative, mid-season, and late-season stages of maize growth. The key contribution of this system is the derivation of index thresholds from CWR and site-specific rainfall conditions. The widely used approach, which calibrates IBCI by correlating yields and rainfall, exposes contracts to basis risk because, by simply correlating yield and rainfall data, it overlooks the influence of non-weather factors on crop yields and losses. The proposed system must be linked or bundled with non-weather variables that affect crop yields. Effectively, this means that the insurance must be linked or bundled with advisories and input supplies to address the influence of non-weather factors on crop losses. This system also incorporates a crop area-mapping component, which was found to be lacking in many IBCI systems. In conclusion, an IBCI that is based on crop water requirements, which incorporates crop area mapping and links insurance with non-weather crop yield-determining factors, is potentially capable of improving crop insurance for smallholder farming systems.Thesis (PhD) -- Faculty of Science and Agriculture, 202
    • …
    corecore