15,176 research outputs found

    Inter-individual variation of the human epigenome & applications

    Get PDF

    Exploring missing heritability in neurodevelopmental disorders:Learning from regulatory elements

    Get PDF
    In this thesis, I aimed to solve part of the missing heritability in neurodevelopmental disorders, using computational approaches. Next to the investigations of a novel epilepsy syndrome and investigations aiming to elucidate the regulation of the gene involved, I investigated and prioritized genomic sequences that have implications in gene regulation during the developmental stages of human brain, with the goal to create an atlas of high confidence non-coding regulatory elements that future studies can assess for genetic variants in genetically unexplained individuals suffering from neurodevelopmental disorders that are of suspected genetic origin

    Venomous gland transcriptome and venom proteomic analysis of the scorpion Androctonus amoreuxi reveal new peptides with anti-SARS-CoV-2 activity

    Get PDF
    The recent COVID-19 pandemic shows the critical need for novel broad spectrum antiviral agents. Scorpion venoms are known to contain highly bioactive peptides, several of which have demonstrated strong antiviral activity against a range of viruses. We have generated the first annotated reference transcriptome for the Androctonus amoreuxi venom gland and used high performance liquid chromatography, transcriptome mining, circular dichroism and mass spectrometric analysis to purify and characterize twelve previously undescribed venom peptides. Selected peptides were tested for binding to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and inhibition of the spike RBD ‚Äď human angiotensin-converting enzyme 2 (hACE2) interaction using surface plasmon resonance-based assays. Seven peptides showed dose-dependent inhibitory effects, albeit with IC50 in the high micromolar range (117‚Äď1202 ¬ĶM). The most active peptide was synthesized using solid phase peptide synthesis and tested for its antiviral activity against SARS-CoV-2 (Lineage B.1.1.7). On exposure to the synthetic peptide of a human lung cell line infected with replication-competent SARS-CoV-2, we observed an IC50 of 200 nM, which was nearly 600-fold lower than that observed in the RBD ‚Äď hACE2 binding inhibition assay. Our results show that scorpion venom peptides can inhibit the SARS-CoV-2 replication although unlikely through inhibition of spike RBD ‚Äď hACE2 interaction as the primary mode of action. Scorpion venom peptides represent excellent scaffolds for design of novel anti-SARS-CoV-2 constrained peptides. Future studies should fully explore their antiviral mode of action as well as the structural dynamics of inhibition of target virus-host interactions

    The histone binding capacity of SPT2 controls chromatin structure and function in Metazoa

    Get PDF
    Histone chaperones control nucleosome density and chromatin structure. In yeast, the H3-H4 chaperone Spt2 controls histone deposition at active genes but its roles in metazoan chromatin structure and organismal physiology are not known. Here we identify the Caenorhabditis elegans ortholog of SPT2 (CeSPT-2) and show that its ability to bind histones H3-H4 is important for germline development and transgenerational epigenetic gene silencing, and that spt-2 null mutants display signatures of a global stress response. Genome-wide profiling showed that CeSPT-2 binds to a range of highly expressed genes, and we find that spt-2 mutants have increased chromatin accessibility at a subset of these loci. We also show that SPT2 influences chromatin structure and controls the levels of soluble and chromatin-bound H3.3 in human cells. Our work reveals roles for SPT2 in controlling chromatin structure and function in Metazoa.</p

    Clostridioides difficile canonical L,D-transpeptidases catalyze a novel type of peptidoglycan cross-links and are not required for beta-lactam resistance

    Get PDF
    Clostridioides difficile is the leading cause of antibiotic-associated diarrhea worldwide with significant morbidity and mortality. This organism is naturally resistant to several beta-lactam antibiotics that inhibit the polymerization of peptidoglycan, an essential component of the bacteria cell envelope. Previous work has revealed that C. difficile peptidoglycan has an unusual composition. It mostly contains 3-3 cross-links, catalyzed by enzymes called L,D-transpeptidases (Ldts) that are poorly inhibited by beta-lactams. It was therefore hypothesized that peptidoglycan polymerization by these enzymes could underpin antibiotic resistance. Here, we investigated the catalytic activity of the three canonical Ldts encoded by C. difficile (LdtCd1, LdtCd2, and LdtCd3) in vitro and explored their contribution to growth and antibiotic resistance. We show that two of these enzymes catalyze the formation of novel types of peptidoglycan cross-links using meso-diaminopimelic acid both as a donor and an acceptor, also observed in peptidoglycan sacculi. We demonstrate that the simultaneous deletion of these three genes only has a minor impact on both peptidoglycan structure and resistance to beta-lactams. This unexpected result therefore implies that the formation of 3-3 peptidoglycan cross-links in C. difficile is catalyzed by as yet unidentified noncanonical Ldt enzymes

    DNA damage in transcriptional regulation

    Get PDF
    The genome is continuously exposed to DNA damage, the most genotoxic of which are double-strand DNA breaks (DSBs). Their presence is signalled to the cell through phosphorylation of the histone variant H2AX at ser139, forming ő≥H2AX, which recruits DNA repair factors. ő≥H2AX has been extensively studied using ChIP-seq; here, a novel ChIP-based technique, CUT&Tag, was used to detect ő≥H2AX formation in DNA damage-inducible cells and the results were analysed alongside publicly available ő≥H2AX ChIP-seq datasets. CUT&Tag required fewer cells and sequencing reads than ChIP-seq, and yet exhibited improved signal:noise. H2AX can also be phosphorylated at tyr142, which is lost upon DNA damage. It is thought that H2AX phosphorylated at ser139 and tyr142 (di-ő≥H2AX) exists transiently in cells, however, that a sustained di-ő≥H2AX signal is pro-apoptotic. Di-ő≥H2AX was investigated using a newly developed antibody by immunofluorescence, western blot and ChIP-qPCR; however, it was later discovered that the antibody was non-specific. DNA damage also plays a role in gene regulation. Estrogen receptor (ER) is bound by its ligand, estrogen, upon which it activates its target genes. In the ER+ breast cancer cell line MCF7, ER recruits the cytidine deaminase APOBEC3B (A3B), which deaminates cytosine, leading to DSBs, repair of which facilitates activation of target genes. To investigate A3B binding further, in the presence and absence of ER, existing ChIP-seq datasets were reanalysed; sites of recruitment were categorised based on ER coincidence and each category characterised in detail, based on the enriched motifs, targeted genes and gene ontology. Sites occupied by both A3B and ER were strongly enriched for the ER motif and estrogen-regulated genes. Interestingly, sites at which A3B binds without ER were also enriched for the ER motif and estrogen-associated genes, suggesting that even sites at which A3B binds independently of ER are associated with the estrogen response

    Whole mitochondrial genome sequencing provides new insights into the phylogeography of loggerhead turtles (Caretta caretta) in the Mediterranean Sea

    Get PDF
    Population structure and phylogeography of the loggerhead sea turtle (Caretta caretta) have so far been assessed mainly by mitochondrial DNA (mtDNA) single-gene sequencing studies. However, phylogenetic relationships amongst matrilines, genetic characterisation of rookeries and mixed-stock analyses have suffered from the limited resolution obtained by comparison of relatively short sequences such as from the mtDNA control region. Whole mitogenome sequencing can significantly improve population genetics, particularly in marine organisms showing female natal philopatry. Despite mitogenomics becoming increasingly common in biodiversity monitoring and conservation, only a few complete mitogenomes are available for C. caretta. In this study, we sequenced the complete mtDNA of 61 loggerhead turtles sampled between 2008 and 2021 along the Italian coastline and central Mediterranean Sea. We assigned complete mtDNA haplotypes to dead embryos and bycatch samples, and introduced a first nomenclature for loggerhead mitogenomes. Analysis of mtDNA diversity, Maximum Parsimony and Bayesian phylogenetic reconstruction allowed improved resolution of lineages with respect to studies reporting on partial mtDNA control region sequence comparisons, and we were able to further inform previous analyses on loggerhead ancestry based on control region haplogroups. Overall, whole mitogenome analysis has potential for considerable improvement of evolutionary history and phylogeographic investigations as well as mixed-stock surveys of loggerhead turtles

    Advanced sequencing technologies applied to human cytomegalovirus

    Get PDF
    The betaherpesvirus human cytomegalovirus (HCMV) is a ubiquitous viral pathogen. It is the most common cause of congenital infection in infants and of opportunistic infections in immunocompromised patients worldwide. The large double-stranded DNA genome of HCMV (236 kb) contains several genes that exhibit a high degree of variation among strains within an otherwise highly conserved sequence. These hypervariable genes encode immune escape, tropism or regulatory factors that may affect virulence. Variation arising from these genes and from an evolutionary history of recombination between strains has been hypothesised to be linked to disease severity. To investigate this, the HCMV genome has been scrutinised in detail over the years using a variety of molecular techniques, most looking only at one or a few of these genes at a time. The advent of high-throughput sequencing (HTS) technology 20 years ago then started to enable more in-depth whole-genome analyses. My study extends this field by using both HTS and the more recently developed long-read nanopore technology to determine HCMV genome sequences directly from clinical samples. Firstly, I used an Illumina HTS pipeline to sequence HCMV strains directly from formalin-fixed, paraffin-embedded (FFPE) tissues. FFPE samples are a valuable repository for the study of relatively rare diseases, such as congenital HCMV (cCMV). However, formalin fixation induces DNA fragmentation and cross-linking, making this a challenging sample type for DNA sequencing. I successfully sequenced five whole HCMV genomes from FFPE tissues. Next, I developed a pipeline utilising the single-molecule, long-read sequencer from Oxford Nanopore Technologies (ONT) to sequence HCMV initially from high-titre cellcultured laboratory strains and then from clinical samples with high HCMV loads. Finally, I utilised a direct RNA sequencing protocol with the ONT sequencer to characterise novel HCMV transcripts produced during infection in cell culture, demonstrating the existence of transcript isoforms with multiple splice sites. Overall, my findings demonstrate how advanced sequencing technologies can be used to characterise the genome and transcriptome of a large DNA virus, and will facilitate future studies on HCMV prognostic factors, novel antiviral targets and vaccine development

    Effect of glyphosate, its metabolite AMPA, and the glyphosate formulation Roundup¬ģ on brown trout (Salmo trutta f. fario) gut microbiome diversity

    Get PDF
    Glyphosate is used worldwide as a compound of pesticides and is detectable in many environmental compartments. It enters water bodies primarily through drift from agricultural areas so that aquatic organisms are exposed to this chemical, especially after rain events. Glyphosate is advertised and sold as a highly specific herbicide, which interacts with the EPSP synthase, an enzyme of the shikimate metabolism, resulting in inhibition of the synthesis of vital aromatic amino acids. However, not only plants but also bacteria can possess this enzyme so that influences of glyphosate on the microbiomes of exposed organisms cannot be excluded. Those influences may result in subtle and long-term effects, e.g., disturbance of the symbiotic interactions of bionts with microorganisms of their microbiomes. Mechanisms how the transformation product aminomethylphosphonic acid (AMPA) of glyphosate might interfere in this context have not understood so far. In the present study, molecular biological fingerprinting methods showed concentration-dependent effects of glyphosate and AMPA on fish microbiomes. In addition, age-dependent differences in the composition of the microbiomes regarding abundance and diversity were detected. Furthermore, the effect of exposure to glyphosate and AMPA was investigated for several fish pathogens of gut microbiomes in terms of their gene expression of virulence factors associated with pathogenicity. In vitro transcriptome analysis with the fish pathogen Yersinia ruckeri revealed that it is questionable whether the observed effect on the microbiome is caused by the intended mode of action of glyphosate, such as the inhibition of EPSP synthase activity

    Multi-omic profiling of a newly isolated Oxy-PAH degrading specialist from PAH-contaminated soil reveals bacterial mechanisms to mitigate the risk posed by polar transformation products

    Full text link
    Polar biotransformation products have been identified as causative agents for the eventual increase in genotoxicity observed after the bioremediation of PAH-contaminated soils.Their further biodegradation has been described under certain biostimulation conditions; however, the underlying microorganisms and mechanisms remain to be elucidated. 9,10-Anthraquinone (ANTQ), a transformation product from anthracene (ANT), is the most commonly detected oxygenated PAH (oxy-PAH) in contaminated soils. Sand-in-liquid microcosms inoculated with creosote-contaminated soil revealed the existence of a specialized ANTQ degrading community, and Sphingobium sp. AntQ-1 was isolated for its ability to grow on this oxy-PAH. Combining the metabolomic, genomic, and transcriptomic analyses of strain AntQ-1, we comprehensively reconstructed the ANTQ biodegradation pathway. Novel mechanisms for polyaromatic compound degradation were revealed, involving the cleavage of the central ring catalyzed by Baeyer‚ąíVilliger monooxygenases (BVMO). Abundance of strain AntQ-1 16S rRNA and its BVMO genes in the sandin-liquid microcosms correlated with maximum ANTQ biodegradation rates, supporting the environmental relevance of this mechanism. Our results demonstrate the existence of highly specialized microbial communities in contaminated soils responsible for processing oxy-PAHs accumulated by primary degraders. Also, they underscore the key role that BVMO may play as a detoxification mechanism to mitigate the risk posed by oxy-PAH formation during bioremediation of PAH-contaminated soils
    • ‚Ķ
    corecore