509 research outputs found

    Transportation data InTegration and ANalytic

    Get PDF
    State transportation agencies regularly collect and store various types of data for different uses such as planning, traffic operations, design, and construction. These large datasets contain treasure troves of information that could be fused and mined, but the size and complexity of data mining require the use of advanced tools such as big data analytics, machine learning, and cluster computing. TITAN (Transportation data InTegration and ANalytics) is an initial prototype of an interactive web-based platform that demonstrates the possibilities of such big data software. The current study succeeded in showing a user-friendly front end, graphical in nature, and a scalable back end capable of integrating multiple big databases with minimal latencies. This thesis documents how the key components of TITAN were designed. Several applications, including mobility, safety, transit performance, and predictive crash analytics, are used to explore the strengths and limitations of the platform. A comparative analysis of the current TITAN platform with traditional database systems such as Oracle and Tableau is also conducted to explain who needs to use the platform and when to use which platform. As TITAN was shown to be feasible and efficient, the future research direction should aim to add more types of data and deploy TITAN in various data-driven decision-making processes.Includes bibliographical reference

    Test Cases Evolution of Mobile Applications: Model Driven Approach

    Get PDF
    AELOS_HCERES2020 , NAOMOD_HCERES2020Mobile Applications Developers, with large freedom given to them, focus on satisfying market requirements and on pleasing consumer’s desires. They are forced to be creative and productive in a short period of time. As a result, billions of powerful mobile applications are displayed every day. Therefore, every mobile application needs to continually change and make an incremental evolution in order to survive and preserve its ranking among the top applications in the market. Mobile apps Testers hold a heavy responsibility on their shoulders, the intrinsic nature of agile swift change of mobile apps pushes them to be meticulous, to be aware that things can be different at any time, and to be prepared for unpredicted crashes. Therefore, starting the generation or the creation of test cases from scratch and selecting each time the overridden or the overloaded test cases is a tedious operation. In software testing the time allocated for testing and correcting defects is important for every software development (regularly half the time). This time can be reduced by the introduction of tools and the adoption of new testing methods. In the field of mobile development, new concerns should be taken into account; among the most important ones are the heterogeneity of execution environments and the fragmentation of terminals which have different impacts on the functionality, performance, and connectivity. This project studies the evolution of mobile applications and its impact on the evolution of test cases from their creation until their expiration stage. A detailed case study of a native open source Android application is provided; describing many aspects of design, development, testing in addition to the analysis of the process of mobile apps evolution. This project based on model driven engineering approach where the models are serialized using the standard XMI. It presents a protocol for the adaptation of test cases under certain restrictions

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Analytics-as-a-Service in a Multi-Cloud Environment through Semantically-enabled Hierarchical Data Processing

    Get PDF
    yesA large number of cloud middleware platforms and tools are deployed to support a variety of Internet of Things (IoT) data analytics tasks. It is a common practice that such cloud platforms are only used by its owners to achieve their primary and predefined objectives, where raw and processed data are only consumed by them. However, allowing third parties to access processed data to achieve their own objectives significantly increases intergation, cooperation, and can also lead to innovative use of the data. Multicloud, privacy-aware environments facilitate such data access, allowing different parties to share processed data to reduce computation resource consumption collectively. However, there are interoperability issues in such environments that involve heterogeneous data and analytics-as-a-service providers. There is a lack of both - architectural blueprints that can support such diverse, multi-cloud environments, and corresponding empirical studies that show feasibility of such architectures. In this paper, we have outlined an innovative hierarchical data processing architecture that utilises semantics at all the levels of IoT stack in multicloud environments. We demonstrate the feasibility of such architecture by building a system based on this architecture using OpenIoT as a middleware, and Google Cloud and Microsoft Azure as cloud environments. The evaluation shows that the system is scalable and has no significant limitations or overheads
    corecore