1,725,890 research outputs found

    Bioactivity and structural properties of chimeric analogs of the starfish SALMFamide neuropeptides S1 and S2

    Get PDF
    The starfish SALMFamide neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide) are the prototypical members of a family of neuropeptides that act as muscle relaxants in echinoderms. Comparison of the bioactivity of S1 and S2 as muscle relaxants has revealed that S2 is ten times more potent than S1. Here we investigated a structural basis for this difference in potency by comparing the bioactivity and solution conformations (using NMR and CD spectroscopy) of S1 and S2 with three chimeric analogs of these peptides. A peptide comprising S1 with the addition of S2's N-terminal tetrapeptide (Long S1 or LS1; SGPYGFNSALMFamide) was not significantly different to S1 in its bioactivity and did not exhibit concentration-dependent structuring seen with S2. An analog of S1with its penultimate residue substituted from S2 (S1(T); GFNSALTFamide) exhibited S1-like bioactivity and structure. However, an analog of S2 with its penultimate residue substituted from S1 (S2(M); SGPYSFNSGLMFamide) exhibited loss of S2-type bioactivity and structural properties. Collectively, our data indicate that the C-terminal regions of S1 and S2 are the key determinants of their differing bioactivity. However, the N-terminal region of S2 may influence its bioactivity by conferring structural stability in solution. Thus, analysis of chimeric SALMFamides has revealed how neuropeptide bioactivity is determined by a complex interplay of sequence and conformation

    Generalized twistor spaces for hyperkähler manifolds

    Get PDF
    Let M be a hyperkaehler manifold. The S2-family of complex structures compatible with the hyperkaehler metric can be assembled into a single complex structure on Z = M × S2; the resulting complex manifold is known as the twistor space of M. We describe the analogous construction for generalized complex structures in the sense of Hitchin. Specifically, we exhibit a natural S2 × S2-family of generalized complex structures compatible with the hyperkaehler metric, and assemble them into a single generalized complex structure on X = M × S2 × S2. We call the resulting generalized complex manifold the generalized twistor space of M

    Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association

    Get PDF
    The neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide), which share sequence similarity, were discovered in the starfish Asterias rubens and are prototypical members of the SALMFamide family of neuropeptides in echinoderms. SALMFamide neuropeptides act as muscle relaxants and both S1 and S2 cause relaxation of cardiac stomach and tube foot preparations in vitro but S2 is an order of magnitude more potent than S1. Here we investigated a structural basis for this difference in potency using spectroscopic techniques. Circular dichroism spectroscopy showed that S1 does not have a defined structure in aqueous solution and this was supported by 2D nuclear magnetic resonance experiments. In contrast, we found that S2 has a well-defined conformation in aqueous solution. However, the conformation of S2 was concentration dependent, with increasing concentration inducing a transition from an unstructured to a structured conformation. Interestingly, this property of S2 was not observed in an N-terminally truncated analogue of S2 (short S2 or SS2; SFNSGLTFamide). Collectively, the data obtained indicate that the N-terminal region of S2 facilitates peptide self-association at high concentrations, which may have relevance to the biosynthesis and/or bioactivity of S2 in vivo

    B_{s1}(5830) and B_{s2}^*(5840)

    Full text link
    In this paper we investigate the strong decays of the two newly observed bottom-strange mesons Bs1(5830)B_{s1}(5830) and Bs2∗(5840)B_{s2}^*(5840) in the framework of the quark pair creation model. The two-body strong decay widths of Bs1(5830)0→B∗+K−B_{s1}(5830)^0\to B^{*+}K^- and Bs2∗(5840)0→B+K−,B∗+K−B_{s2}^*(5840)^0\to B^+K^-, B^{*+}K^- are calculated by considering Bs1(5830)B_{s1}(5830) to be a mixture between ∣1P1>|^1P_1> and ∣3P1>|^3P_1> states, and Bs2∗(5840)B_{s2}^*(5840) to be a ∣3P2>|^3P_2> state. The double pion decay of Bs1(5830)B_{s1}(5830) and Bs2∗(5840)B_{s2}^*(5840) is supposed to occur via the intermediate state σ\sigma and f0(980)f_0(980). Although the double pion decay widths of Bs1(5830)B_{s1}(5830) and Bs2∗(5840)B_{s2}^*(5840) are smaller than the two-body strong decay widths of Bs1(5830)B_{s1}(5830) and Bs2∗(5840)B_{s2}^*(5840), one suggests future experiments to search the double pion decays of Bs1(5830)B_{s1}(5830) and Bs2∗(5840)B_{s2}^*(5840) due to their sizable decay widths.Comment: 9 pages, 8 figures and 6 tables. More references and discussions added, typos corrected, some descriptions changed. Publication version in PR

    S2: An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification

    Full text link
    This paper investigates the problem of active learning for binary label prediction on a graph. We introduce a simple and label-efficient algorithm called S2 for this task. At each step, S2 selects the vertex to be labeled based on the structure of the graph and all previously gathered labels. Specifically, S2 queries for the label of the vertex that bisects the *shortest shortest* path between any pair of oppositely labeled vertices. We present a theoretical estimate of the number of queries S2 needs in terms of a novel parametrization of the complexity of binary functions on graphs. We also present experimental results demonstrating the performance of S2 on both real and synthetic data. While other graph-based active learning algorithms have shown promise in practice, our algorithm is the first with both good performance and theoretical guarantees. Finally, we demonstrate the implications of the S2 algorithm to the theory of nonparametric active learning. In particular, we show that S2 achieves near minimax optimal excess risk for an important class of nonparametric classification problems.Comment: A version of this paper appears in the Conference on Learning Theory (COLT) 201

    Strong decay of the heavy tensor mesons with QCD sum rules

    Full text link
    In the article, we calculate the hadronic coupling constants GD2∗DπG_{D_2^*D\pi}, GDs2∗DKG_{D_{s2}^*DK}, GB2∗BπG_{B_2^*B\pi}, GBs2∗BKG_{B_{s2}^*BK} with the three-point QCD sum rules, then study the two body strong decays D2∗(2460)→DπD_2^*(2460)\to D\pi, Ds2∗(2573)→DKD_{s2}^*(2573)\to DK, B2∗(5741)→BπB_2^*(5741)\to B\pi, Bs2∗(5840)→BKB_{s2}^*(5840)\to BK, and make predictions to be confronted with the experimental data in the future.Comment: 12 pages, 2 figure

    An S2 Fluorescence Model for Interpreting High-Resolution Cometary Spectra. I. Model Description and Initial Results

    Full text link
    A new versatile model providing S2 fluorescence spectrum as a function of time is developed with the aim of interpreting high resolution cometary spectra. For the S2 molecule, it is important to take into account both chemical and dynamic processes because S2 has a short lifetime and is confined in the inner coma where these processes are most important. The combination of the fluorescence model with a global coma model allows for the comparison with observations of column densities taken through an aperture and for the analysis of S2 fluorescence in different parts of the coma. Moreover, the model includes the rotational structure of the molecule. Such a model is needed for interpreting recent high spectral resolution observations of cometary S2. A systematic study of the vibrational-rotational spectrum of S2 is undertaken, including relevant effects, such as non-equilibrium state superposition and the number density profile within the coma due to dynamics and chemistry, to investigate the importance of the above effects on the scale length and abundance of S2 in comets.Comment: 20 pages, 7 figure

    Optimal Beamforming for Two-Way Multi-Antenna Relay Channel with Analogue Network Coding

    Full text link
    This paper studies the wireless two-way relay channel (TWRC), where two source nodes, S1 and S2, exchange information through an assisting relay node, R. It is assumed that R receives the sum signal from S1 and S2 in one time-slot, and then amplifies and forwards the received signal to both S1 and S2 in the next time-slot. By applying the principle of analogue network (ANC), each of S1 and S2 cancels the so-called "self-interference" in the received signal from R and then decodes the desired message. Assuming that S1 and S2 are each equipped with a single antenna and R with multi-antennas, this paper analyzes the capacity region of an ANC-based TWRC with linear processing (beamforming) at R. The capacity region contains all the achievable bidirectional rate-pairs of S1 and S2 under the given transmit power constraints at S1, S2, and R. We present the optimal relay beamforming structure as well as an efficient algorithm to compute the optimal beamforming matrix based on convex optimization techniques. Low-complexity suboptimal relay beamforming schemes are also presented, and their achievable rates are compared against the capacity with the optimal scheme.Comment: to appear in JSAC, 200
    • …
    corecore