117 research outputs found

    Accomplishments of the NASA Johnson Space Center portion of the soil moisture project in fiscal year 1981

    Get PDF
    The NASA/JSC ground scatterometer system was used in a row structure and row direction effects experiment to understand these effects on radar remote sensing of soil moisture. Also, a modification of the scatterometer system was begun and is continuing, to allow cross-polarization experiments to be conducted in fiscal years 1982 and 1983. Preprocessing of the 1978 agricultural soil moisture experiment (ASME) data was completed. Preparations for analysis of the ASME data is fiscal year 1982 were completed. A radar image simulation procedure developed by the University of Kansas is being improved. Profile soil moisture model outputs were compared quantitatively for the same soil and climate conditions. A new model was developed and tested to predict the soil moisture characteristic (water tension versus volumetric soil moisture content) from particle-size distribution and bulk density data. Relationships between surface-zone soil moisture, surface flux, and subsurface moisture conditions are being studied as well as the ways in which measured soil moisture (as obtained from remote sensing) can be used for agricultural applications

    Radar Remote Sensing of Agricultural Canopies: A Review

    Full text link

    Earth resources: A continuing bibliography with indexes (issue 61)

    Get PDF
    This bibliography lists 606 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors, and economic analysis

    Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

    Get PDF
    Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices

    Computer simulation of a space SAR using a range-sequential processor for soil moisture mapping

    Get PDF
    The ability of a spaceborne synthetic aperture radar (SAR) to detect soil moisture was evaluated by means of a computer simulation technique. The computer simulation package includes coherent processing of the SAR data using a range-sequential processor, which can be set up through hardware implementations, thereby reducing the amount of telemetry involved. With such a processing approach, it is possible to monitor the earth's surface on a continuous basis, since data storage requirements can be easily met through the use of currently available technology. The Development of the simulation package is described, followed by an examination of the application of the technique to actual environments. The results indicate that in estimating soil moisture content with a four-look processor, the difference between the assumed and estimated values of soil moisture is within + or - 20% of field capacity for 62% of the pixels for agricultural terrain and for 53% of the pixels for hilly terrain. The estimation accuracy for soil moisture may be improved by reducing the effect of fading through non-coherent averaging

    Earth resources: A continuing bibliography with indexes (issue 51)

    Get PDF
    This bibliography lists 382 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Design Data Collection with Skylab Microwave Radiometer-Scatterometer S-193, Volume 1

    Get PDF
    The author has identified the following significant results. Observations with S-193 have provided radar design information for systems to be flown on spacecraft, but only at 13.9 GHz and for land areas over the United States and Brazil plus a few other areas of the world for which this kind of analysis was not made. Observations only extended out to about 50 deg angle of incidence. The value of a sensor with such a gross resolution for most overland resource and status monitoring systems seems marginal, with the possible exception of monitoring soil moisture and major vegetation variations. The complementary nature of the scatterometer and radiometer systems was demonstrated by the correlation analysis. Although radiometers must have spatial resolutions dictated by antenna size, radars can use synthetic aperture techniques to achieve much finer resolutions. Multiplicity of modes in the S-193 sensors complicated both the system development and its employment. An attempt was made in the design of the S-193 to arrange optimum integration times for each angle and type of measurement. This unnecessarily complicated the design of the instrument, since the gains in precision achieved in this way were marginal. Either a software-controllable integration time or a set of only two or three integration times would have been better

    Robust machine learning techniques for rice crop variables estimation using multiangular bistatic scattering coefficients

    Get PDF
    The present study is designed to explore the potential of bistatic scattering coefficients (σ °) and machine learning algorithms for the estimation of rice crop variables using ground-based multiangular, multitemporal, and dual-polarized bistatic scatterometer data. The bistatic scatterometer measurements are carried out at eight different growth stages of the rice crop in the angular range of incidence angle 20 deg to 70 deg for HH- and VV-polarization at 10-GHz frequency in the specular direction with an azimuthal angle (φ  =  0). Several field measurements are taken for the measurement of rice crop variables, such as vegetation water content, leaf area index, and plant height at its various growth stages. Machine learning algorithms—such as fuzzy inference system (FIS), support vector machine for regression (SVR), and generalized linear model (GLM)—are used to estimate the rice crop variables using bistatic scatterometer data. The linear regression analysis is carried out for the evaluation of the multiangular, multitemporal, and dual-polarized datasets for the selection of optimum incidence angle and polarization for accurate estimation of rice crop variables. The highest value of the coefficient of determination (R2) is found at 30-deg incidence angle for VV-polarization. The sensitivity of copolarized ratio of σ °   with the rice crop variable is also evaluated using linear regression analysis for the estimation of rice crop variables. The highest value of R^2 is found to be at 35-deg incidence angle between the copolarized ratio of σ °   and rice crop variables. The performance of SVR model is found superior in comparison to the FIS and GLM at VV-polarization and the copolarized ratio of σ °   for the estimation of rice crop variables. However, the copolarized ratio of σ °   is found superior to VV-polarized bistatic scatterometer data for the estimation of rice crop variables
    • …
    corecore