33,162 research outputs found

    Transport on flexible Rydberg aggregates using circular states

    Full text link
    Assemblies of interacting Rydberg atoms show promise for the quantum simulation of transport phenomena, quantum chemistry and condensed matter systems. Such schemes are typically limited by the finite lifetime of Rydberg states. Circular Rydberg states have the longest lifetimes among Rydberg states but lack the energetic isolation in the spectrum characteristic of low angular momentum states. The latter is required to obtain simple transport models with few electronic states per atom. Simple models can however even be realized with circular states, by exploiting dipole-dipole selection rules or external fields. We show here that this approach can be particularly fruitful for scenarios where quantum transport is coupled to atomic motion, in adiabatic excitation transport or quantum simulations of electron-phonon coupling in light harvesting. Additionally, we explore practical limitations of flexible Rydberg aggregates with circular states and to which extent interactions among circular Rydberg atoms can be described using classical models.Comment: 9 Pages, 5 Figure

    Rydberg atom mediated polar molecule interactions: a tool for molecular-state conditional quantum gates and individual addressability

    Full text link
    We study the possibility to use interaction between a polar molecule in the ground electronic and vibrational state and a Rydberg atom to construct two-qubit gates between molecular qubits and to coherently control molecular states. A polar molecule within the electron orbit in a Rydberg atom can either shift the Rydberg state, or form Rydberg molecule. Both the atomic shift and the Rydberg molecule states depend on the initial internal state of the polar molecule, resulting in molecular state dependent van der Waals or dipole-dipole interaction between Rydberg atoms. Rydberg atoms mediated interaction between polar molecules can be enhanced up to 10310^{3} times. We describe how the coupling between a polar molecule and a Rydberg atom can be applied to coherent control of molecular states, specifically, to individual addressing of molecules in an optical lattice and non-destructive readout of molecular qubits

    Single-color two-photon spectroscopy of Rydberg states in electric fields

    Get PDF
    Rydberg states of atomic helium with principal quantum numbers ranging from n=20 to n=100 have been prepared by non-resonance-enhanced single-color two-photon excitation from the metastable 2 {^3}S{_1} state. Photoexcitation was carried out using linearly and circularly polarized pulsed laser radiation. In the case of excitation with circularly polarized radiation, Rydberg states with azimuthal quantum number |m_{\ell}|=2 were prepared in zero electric field, and in homogeneous electric fields oriented parallel to the propagation axis of the laser radiation. In sufficiently strong electric fields, individual Rydberg-Stark states were resolved spectroscopically, highlighting the suitability of non-resonance-enhanced multiphoton excitation schemes for the preparation of long-lived high-|m_{\ell}| hydrogenic Rydberg states for deceleration and trapping experiments. Applications of similar schemes for Doppler-free excitation of positronium atoms to Rydberg states are also discussed

    High Resolution Rydberg Spectroscopy of ultracold Rubidium Atoms

    Full text link
    We present experiments on two-photon excitation of 87{\rm ^{87}}Rb atoms to Rydberg states. For this purpose, two continuous-wave (cw)-laser systems for both 780 nm and 480 nm have been set up. These systems are optimized to a small linewidth (well below 1 MHz) to get both an efficient excitation process and good spectroscopic resolution. To test the performance of our laser system, we investigated the Stark splitting of Rydberg states. For n=40 we were able to see the hyperfine levels splitting in the electrical field for different finestructure states. To show the ability of spatially selective excitation to Rydberg states, we excited rubidium atoms in an electrical field gradient and investigated both linewidths and lineshifts. Furthermore we were able to excite the atoms selectively from the two hyperfine ground states to Rydberg states. Finally, we investigated the Autler-Townes splitting of the 5S1/2_{1/2}\to5P3/2_{3/2} transition via a Rydberg state to determine the Rabi frequency of this excitation step.Comment: 9 pages, 7 figure
    corecore