2,412 research outputs found

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine

    Cloudlets: bringing the cloud to the mobile user

    Get PDF

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Towards Self-evolving Context-aware Services

    Get PDF
    The introduction of new communication infrastructures such as Beyond 3rd Generation (B3G) and the widespread usage of small computing devices are rapidly changing the way we use and interact with technology to perform everyday tasks. Ubiquitous networking empowered by B3G networking makes it possible for mobile users to access networked software services across continuously changing heterogeneous infrastructures by resource-constrained devices. Heterogeneity and devices' limitedness, create serious problems for the development and dynamic deployment of mobile applications that are able to run properly on the execution context and consume services matching with the users' expectations. Furthermore, the everchanging B3G environment calls for applications that self-evolve according to context changes. Out of these problems, self-evolving adaptable applications are increasingly emerging in the software community. In this paper we describe how CHAMELEON, a declarative framework for tailoring adaptable applications, is being used for tackling adaptation and self-evolution within the IST PLASTIC project

    Middleware for Internet of Things: A Survey

    Get PDF
    • …
    corecore