952 research outputs found

    Parameterized Complexity Analysis of Randomized Search Heuristics

    Full text link
    This chapter compiles a number of results that apply the theory of parameterized algorithmics to the running-time analysis of randomized search heuristics such as evolutionary algorithms. The parameterized approach articulates the running time of algorithms solving combinatorial problems in finer detail than traditional approaches from classical complexity theory. We outline the main results and proof techniques for a collection of randomized search heuristics tasked to solve NP-hard combinatorial optimization problems such as finding a minimum vertex cover in a graph, finding a maximum leaf spanning tree in a graph, and the traveling salesperson problem.Comment: This is a preliminary version of a chapter in the book "Theory of Evolutionary Computation: Recent Developments in Discrete Optimization", edited by Benjamin Doerr and Frank Neumann, published by Springe

    More effective randomized search heuristics for graph coloring through dynamic optimization

    Get PDF
    Dynamic optimization problems have gained significant attention in evolutionary computation as evolutionary algorithms (EAs) can easily adapt to changing environments. We show that EAs can solve the graph coloring problem for bipartite graphs more efficiently by using dynamic optimization. In our approach the graph instance is given incrementally such that the EA can reoptimize its coloring when a new edge introduces a conflict. We show that, when edges are inserted in a way that preserves graph connectivity, Randomized Local Search (RLS) efficiently finds a proper 2-coloring for all bipartite graphs. This includes graphs for which RLS and other EAs need exponential expected time in a static optimization scenario. We investigate different ways of building up the graph by popular graph traversals such as breadth-first-search and depth-first-search and analyse the resulting runtime behavior. We further show that offspring populations (e. g. a (1 + λ) RLS) lead to an exponential speedup in λ. Finally, an island model using 3 islands succeeds in an optimal time of Θ(m) on every m-edge bipartite graph, outperforming offspring populations. This is the first example where an island model guarantees a speedup that is not bounded in the number of islands

    The (1+(λ,λ)) Genetic Algorithm on the Vertex Cover Problem:Crossover Helps Leaving Plateaus

    Get PDF

    A Parameterized Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms

    Full text link
    Bi-level optimisation problems have gained increasing interest in the field of combinatorial optimisation in recent years. With this paper, we start the runtime analysis of evolutionary algorithms for bi-level optimisation problems. We examine two NP-hard problems, the generalised minimum spanning tree problem (GMST), and the generalised travelling salesman problem (GTSP) in the context of parameterised complexity. For the generalised minimum spanning tree problem, we analyse the two approaches presented by Hu and Raidl (2012) with respect to the number of clusters that distinguish each other by the chosen representation of possible solutions. Our results show that a (1+1) EA working with the spanning nodes representation is not a fixed-parameter evolutionary algorithm for the problem, whereas the global structure representation enables to solve the problem in fixed-parameter time. We present hard instances for each approach and show that the two approaches are highly complementary by proving that they solve each other's hard instances very efficiently. For the generalised travelling salesman problem, we analyse the problem with respect to the number of clusters in the problem instance. Our results show that a (1+1) EA working with the global structure representation is a fixed-parameter evolutionary algorithm for the problem

    Combinatorics, Probability and Computing

    Get PDF
    One of the exciting phenomena in mathematics in recent years has been the widespread and surprisingly effective use of probabilistic methods in diverse areas. The probabilistic point of view has turned out to b
    corecore