79 research outputs found

    A Hierarchical Profiler of Intermediate Representation Code based on LLVM

    Get PDF
    Profiling based techniques have gained much attention on computer architecture and software analysis communities. The target is to rely on one or more profiling tools in order to identify specific code pieces of interest e.g., code pieces that slowdown a given application. The extracted code pieces can be further modified and optimized. In general, the profiling tools can be classified as deterministic, statistical-based, or rely on hardware performance counters. A common characteristic of the available profiling tools is typically based on analyzing or even manipulating (in case of binary instrumentation tools) machine-level code. This approach come with two main drawbacks. First, a lot of information (even GBytes of data) needs to be gathered, stored, post-processed, and visualized. Second, the performed analysis of the gathered data is platform-specific and it is not straightforward to categorize the given applications/program phases/kernels into distinct categories that have the same or almost the same behavior (e.g., the same percentage of computational vs. control instructions). The latter stems from the fact even small changes in the source code of the applications might lead to significantly different machine code implementations. Therefore, even two specific program kernels exhibit the same behavior (e.g., they have the same number of instructions, but with a different ordering), it is very difficult for a machine-code level profiling tool to assess their similarity, simply because the generated machine level code might have significant differences resulting in many missing opportunities for the available profiling tools. To address this issue, in this paper, we present a new profiling tool that is able to operate on the machine independent intermediate representation (IR) level. The profiler (still in development phase) relies on the LLVM API and it is able to hierarchically (at various levels of the call stack) and recursively parse the IR code and extract various useful statistics. We showcase the practicality of our profiler by analyzing a subset of the PolyBench benchmarks assuming (as pointed out by a recent study) that there is a strong correlation of LLVM IR code

    Exploiting BSP Abstractions for Compiler Based Optimizations of GPU Applications on multi-GPU Systems

    Get PDF
    Graphics Processing Units (GPUs) are accelerators for computers and provide massive amounts of computational power and bandwidth for amenable applications. While effectively utilizing an individual GPU already requires a high level of skill, effectively utilizing multiple GPUs introduces completely new types of challenges. This work sets out to investigate how the hierarchical execution model of GPUs can be exploited to simplify the utilization of such multi-GPU systems. The investigation starts with an analysis of the memory access patterns exhibited by applications from common GPU benchmark suites. Memory access patterns are collected using custom instrumentation and a simple simulation then analyzes the patterns and identifies implicit communication across the different levels of the execution hierarchy. The analysis reveals that for most GPU applications memory accesses are highly localized and there exists a way to partition the workload so that the communication volume grows slower than the aggregated bandwidth for growing numbers of GPUs. Next, an application model based on Z-polyhedra is derived that formalizes the distribution of work across multiple GPUs and allows the identification of data dependencies. The model is then used to implement a prototype compiler that consumes single-GPU programs and produces executables that distribute GPU workloads across all available GPUs in a system. It uses static analysis to identify memory access patterns and polyhedral code generation in combination with a dynamic tracking system to efficiently resolve data dependencies. The prototype is implemented as an extension to the LLVM/Clang compiler and published in full source. The prototype compiler is then evaluated using a set of benchmark applications. While the prototype is limited in its applicability by technical issues, it provides impressive speedups of up to 12.4x on 16 GPUs for amenable applications. An in-depth analysis of the application runtime reveals that dependency resolution takes up less than 10% of the runtime, often significantly less. A discussion follows and puts the work into context by presenting and differentiating related work, reflecting critically on the work itself and an outlook of the aspects that could be explored as part of this research. The work concludes with a summary and a closing opinion

    Productive Programming Systems for Heterogeneous Supercomputers

    Get PDF
    The majority of today's scientific and data analytics workloads are still run on relatively energy inefficient, heavyweight, general-purpose processing cores, often referred to in the literature as latency-oriented architectures. The flexibility of these architectures and the programmer aids included (e.g. large and deep cache hierarchies, branch prediction logic, pre-fetch logic) makes them flexible enough to run a wide range of applications fast. However, we have started to see growth in the use of lightweight, simpler, energy-efficient, and functionally constrained cores. These architectures are commonly referred to as throughput-oriented. Within each shared memory node, the computational backbone of future throughput-oriented HPC machines will consist of large pools of lightweight cores. The first wave of throughput-oriented computing came in the mid 2000's with the use of GPUs for general-purpose and scientific computing. Today we are entering the second wave of throughput-oriented computing, with the introduction of NVIDIA Pascal GPUs, Intel Knights Landing Xeon Phi processors, the Epiphany Co-Processor, the Sunway MPP, and other throughput-oriented architectures that enable pre-exascale computing. However, while the majority of the FLOPS in designs for future HPC systems come from throughput-oriented architectures, they are still commonly paired with latency-oriented cores which handle management functions and lightweight/un-parallelizable computational kernels. Hence, most future HPC machines will be heterogeneous in their processing cores. However, the heterogeneity of future machines will not be limited to the processing elements. Indeed, heterogeneity will also exist in the storage, networking, memory, and software stacks of future supercomputers. As a result, it will be necessary to combine many different programming models and libraries in a single application. How to do so in a programmable and well-performing manner is an open research question. This thesis addresses this question using two approaches. First, we explore using managed runtimes on HPC platforms. As a result of their high-level programming models, these managed runtimes have a long history of supporting data analytics workloads on commodity hardware, but often come with overheads which make them less common in the HPC domain. Managed runtimes are also not supported natively on throughput-oriented architectures. Second, we explore the use of a modular programming model and work-stealing runtime to compose the programming and scheduling of multiple third-party HPC libraries. This approach leverages existing investment in HPC libraries, unifies the scheduling of work on a platform, and is designed to quickly support new programming model and runtime extensions. In support of these two approaches, this thesis also makes novel contributions in tooling for future supercomputers. We demonstrate the value of checkpoints as a software development tool on current and future HPC machines, and present novel techniques in performance prediction across heterogeneous cores

    Performance engineering of data-intensive applications

    Get PDF
    Data-intensive programs deal with big chunks of data and often contain compute-intensive characteristics. Among various HPC application domains, big data analytics, machine learning and the more recent deep-learning models are well-known data-intensive applications. An efficient design of such applications demands extensive knowledge of the target hardware and software, particularly the memory/cache hierarchy and the data communication among threads/processes. Such a requirement makes code development an arduous task, as inappropriate data structures and algorithm design may result in superfluous runtime, let alone hardware incompatibilities while porting the code to other platforms. In this dissertation, we introduce a set of tools and methods for the performance engineering of parallel data-intensive programs. We start with performance profiling to gain insights on thread communications and relevant code optimizations. Then, by narrowing down our scope to deep-learning applications, we introduce our tools for enhancing the performance portability and scalability of convolutional neural networks (ConvNet) at inference and training phases. Our first contribution is a novel performance-profiling method to unveil potential communication bottlenecks caused by data-access patterns and thread interactions. Our findings show that the data shared between a pair of threads should be reused with a reasonably short intervals to preserve data locality, yet existing profilers neglect them and mainly report the communication volume. We propose new hardware-independent metrics to characterize thread communication and provide suggestions for applying appropriate optimizations on a specific code region. Our experiments show that applying relevant optimizations improves the performance in Rodinia benchmarks by up to 56%. For the next contribution, we developed a framework for automatic generation of efficient and performance-portable convolution kernels, including Winograd convolutions, for various GPU platforms. We employed a synergy of meta-programming, symbolic execution, and auto-tuning. The results demonstrate efficient kernels generated through an automated optimization pipeline with runtimes close to vendor deep-learning libraries, and the minimum required programming effort confirms the performance portability of our approach. Furthermore, our symbolic execution method exploits repetitive patterns in Winograd convolutions, enabling us to reduce the number of arithmetic operations by up to 62% without compromising the numerical stability. Lastly, we investigate possible methods to scale the performance of ConvNets in training and inference phases. Our specialized training platform equipped with a novel topology-aware network pruning algorithm enables rapid training, neural architecture search, and network compression. Thus, an AI model training can be easily scaled to a multitude of compute nodes, leading to faster model design with less operating costs. Furthermore, the network compression component scales a ConvNet model down by removing redundant layers, preparing the model for a more pertinent deployment. Altogether, this work demonstrates the necessity and shows the benefit of performance engineering and parallel programming methods in accelerating emerging data-intensive workloads. With the help of the proposed tools and techniques, we pinpoint data communication bottlenecks and achieve performance portability and scalability in data-intensive applications

    Characterization and Acceleration of High Performance Compute Workloads

    Get PDF

    Characterization and Acceleration of High Performance Compute Workloads

    Get PDF
    corecore