1,687 research outputs found

    On Using Blockchains for Safety-Critical Systems

    Full text link
    Innovation in the world of today is mainly driven by software. Companies need to continuously rejuvenate their product portfolios with new features to stay ahead of their competitors. For example, recent trends explore the application of blockchains to domains other than finance. This paper analyzes the state-of-the-art for safety-critical systems as found in modern vehicles like self-driving cars, smart energy systems, and home automation focusing on specific challenges where key ideas behind blockchains might be applicable. Next, potential benefits unlocked by applying such ideas are presented and discussed for the respective usage scenario. Finally, a research agenda is outlined to summarize remaining challenges for successfully applying blockchains to safety-critical cyber-physical systems

    Intention-oriented programming support for runtime adaptive autonomic cloud-based applications

    Get PDF
    The continuing high rate of advances in information and communication systems technology creates many new commercial opportunities but also engenders a range of new technical challenges around maximising systems' dependability, availability, adaptability, and auditability. These challenges are under active research, with notable progress made in the support for dependable software design and management. Runtime support, however, is still in its infancy and requires further research. This paper focuses on a requirements model for the runtime execution and control of an intention-oriented Cloud-Based Application. Thus, a novel requirements modelling process referred to as Provision, Assurance and Auditing, and an associated framework are defined and developed where a given system's non/functional requirements are modelled in terms of intentions and encoded in a standard open mark-up language. An autonomic intention-oriented programming model, using the Neptune language, then handles its deployment and execution. © 2013 Elsevier Ltd. All rights reserved

    Enhancing speed and scalability of the ParFlow simulation code

    Full text link
    Regional hydrology studies are often supported by high resolution simulations of subsurface flow that require expensive and extensive computations. Efficient usage of the latest high performance parallel computing systems becomes a necessity. The simulation software ParFlow has been demonstrated to meet this requirement and shown to have excellent solver scalability for up to 16,384 processes. In the present work we show that the code requires further enhancements in order to fully take advantage of current petascale machines. We identify ParFlow's way of parallelization of the computational mesh as a central bottleneck. We propose to reorganize this subsystem using fast mesh partition algorithms provided by the parallel adaptive mesh refinement library p4est. We realize this in a minimally invasive manner by modifying selected parts of the code to reinterpret the existing mesh data structures. We evaluate the scaling performance of the modified version of ParFlow, demonstrating good weak and strong scaling up to 458k cores of the Juqueen supercomputer, and test an example application at large scale.Comment: The final publication is available at link.springer.co

    Enabling the Autonomic Management of Federated Identity Providers

    Get PDF
    The autonomic management of federated authorization infrastructures (federations) is seen as a means for improving the monitoring and use of a service provider’s resources. However, federations are comprised of independent management domains with varying scopes of control and data ownership. The focus of this paper is on the autonomic management of federated identity providers by service providers located in other domains, when the identity providers have been diagnosed as the source of abuse. In particular, we describe how an autonomic controller, external to the domain of the identity provider, exercises control over the issuing of privilege attributes. The paper presents a conceptual design and implementation of an effector for an identity provider that is capable of enabling cross-domain autonomic management. The implementation of an effector for a SimpleSAMLphp identity provider is evaluated by demonstrating how an autonomic controller, together with the effector, is capable of responding to malicious abuse
    corecore