8 research outputs found

    IST Austria Thesis

    Get PDF
    Hybrid automata combine finite automata and dynamical systems, and model the interaction of digital with physical systems. Formal analysis that can guarantee the safety of all behaviors or rigorously witness failures, while unsolvable in general, has been tackled algorithmically using, e.g., abstraction, bounded model-checking, assisted theorem proving. Nevertheless, very few methods have addressed the time-unbounded reachability analysis of hybrid automata and, for current sound and automatic tools, scalability remains critical. We develop methods for the polyhedral abstraction of hybrid automata, which construct coarse overapproximations and tightens them incrementally, in a CEGAR fashion. We use template polyhedra, i.e., polyhedra whose facets are normal to a given set of directions. While, previously, directions were given by the user, we introduce (1) the first method for computing template directions from spurious counterexamples, so as to generalize and eliminate them. The method applies naturally to convex hybrid automata, i.e., hybrid automata with (possibly non-linear) convex constraints on derivatives only, while for linear ODE requires further abstraction. Specifically, we introduce (2) the conic abstractions, which, partitioning the state space into appropriate (possibly non-uniform) cones, divide curvy trajectories into relatively straight sections, suitable for polyhedral abstractions. Finally, we introduce (3) space-time interpolation, which, combining interval arithmetic and template refinement, computes appropriate (possibly non-uniform) time partitioning and template directions along spurious trajectories, so as to eliminate them. We obtain sound and automatic methods for the reachability analysis over dense and unbounded time of convex hybrid automata and hybrid automata with linear ODE. We build prototype tools and compare—favorably—our methods against the respective state-of-the-art tools, on several benchmarks

    Behavioral validation in Cyber-physical systems: Safety violations and beyond

    Get PDF
    The advances in software and hardware technologies in the last two decades have paved the way for the development of complex systems we observe around us. Avionics, automotive, power grid, medical devices, and robotics are a few examples of such systems which are usually termed as Cyber-physical systems (CPS) as they often involve both physical and software components. Deployment of a CPS in a safety critical application mandates that the system operates reliably even in adverse scenarios. While effective in improving confidence in system functionality, testing can not ascertain the absence of failures; whereas, formal verification can be exhaustive but it may not scale well as the system complexity grows. Simulation driven analysis tends to bridge this gap by tapping key system properties from the simulations. Despite their differences, all these analyses can be pivotal in providing system behaviors as the evidence to the satisfaction or violation of a given performance specification. However, less attention has been paid to algorithmically validating and characterizing different behaviors of a CPS. The focus of this thesis is on behavioral validation of Cyber-physical systems, which can supplement an existing CPS analysis framework. This thesis develops algorithmic tools for validating verification artifacts by generating a variety of counterexamples for a safety violation in a linear hybrid system. These counterexamples can serve as performance metrics to evaluate different controllers during design and testing phases. This thesis introduces the notion of complete characterization of a safety violation in a linear system with bounded inputs, and it proposes a sound technique to compute and efficiently represent these characterizations. This thesis further presents neural network based frameworks to perform systematic state space exploration guided by sensitivity or its gradient approximation in learning-enabled control (LEC) systems. The presented technique is accompanied with convergence guarantees and yields considerable performance gain over a widely used falsification platform for a class of signal temporal logic (STL) specifications.Doctor of Philosoph

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    DESIGN AND VERIFICATION OF AUTONOMOUS SYSTEMS IN THE PRESENCE OF UNCERTAINTIES

    Get PDF
    Autonomous Systems offer hope towards moving away from mechanized, unsafe, manual, often inefficient practices. The last decade has seen several small, but important, steps towards making this dream into reality. These advancements have helped us to achieve limited autonomy in several places, such as, driving, factory floors, surgeries, wearables, and home assistants, etc. Nevertheless, autonomous systems are required to operate in a wide range of environments with uncertainties (viz., sensor errors, timing errors, dynamic nature of the environment, etc.). Such environmental uncertainties, even when present in small amounts, can have drastic impact on the safety of the system—thus hampering the goal of achieving higher degree of autonomy, especially in safety critical domains. To this end, the dissertation shall discuss formaltechniques that are able to verify and design autonomous systems for safety, even under the presence of such uncertainties, allowing for their trustworthy deployment in the real world. Specifically, the dissertation shall discuss monitoring techniques for autonomous systems from available (noisy) logs, and safety-verification techniques of autonomous system controllers under timing uncertainties. Secondly, using heterogeneous learning-based cloud computing models that can balance uncertainty in output and computation cost, the dissertation will present techniques for designing safe and performance-optimal autonomous systems.Doctor of Philosoph

    Running SpaceEx on the ARCH14 Benchmarks

    No full text
    corecore