2,840 research outputs found

    A matrix-free high-order discontinuous Galerkin compressible Navier-Stokes solver: A performance comparison of compressible and incompressible formulations for turbulent incompressible flows

    Full text link
    Both compressible and incompressible Navier-Stokes solvers can be used and are used to solve incompressible turbulent flow problems. In the compressible case, the Mach number is then considered as a solver parameter that is set to a small value, M≈0.1\mathrm{M}\approx 0.1, in order to mimic incompressible flows. This strategy is widely used for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. The present work raises the question regarding the computational efficiency of compressible DG solvers as compared to a genuinely incompressible formulation. Our contributions to the state-of-the-art are twofold: Firstly, we present a high-performance discontinuous Galerkin solver for the compressible Navier-Stokes equations based on a highly efficient matrix-free implementation that targets modern cache-based multicore architectures. The performance results presented in this work focus on the node-level performance and our results suggest that there is great potential for further performance improvements for current state-of-the-art discontinuous Galerkin implementations of the compressible Navier-Stokes equations. Secondly, this compressible Navier-Stokes solver is put into perspective by comparing it to an incompressible DG solver that uses the same matrix-free implementation. We discuss algorithmic differences between both solution strategies and present an in-depth numerical investigation of the performance. The considered benchmark test cases are the three-dimensional Taylor-Green vortex problem as a representative of transitional flows and the turbulent channel flow problem as a representative of wall-bounded turbulent flows

    Strong Stability Preserving Two-Step Runge-Kutta Methods

    Get PDF
    We investigate the strong stability preserving (SSP) property of two-step Runge– Kutta (TSRK) methods. We prove that all SSP TSRK methods belong to a particularly simple\ud subclass of TSRK methods, in which stages from the previous step are not used. We derive simple order conditions for this subclass. Whereas explicit SSP Runge–Kutta methods have order at most four, we prove that explicit SSP TSRK methods have order at most eight. We present TSRK methods of up to eighth order that were found by numerical search. These methods have larger SSP coefficients than any known methods of the same order of accuracy, and may be implemented in a form with relatively modest storage requirements. The usefulness of the TSRK methods is demonstrated through numerical examples, including integration of very high order WENO discretizations

    Optimal Explicit Strong Stability Preserving Runge--Kutta Methods with High Linear Order and optimal Nonlinear Order

    Full text link
    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge--Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge--Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge--Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may be still be worthwhile to use methods with higher nonlinear order

    Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High Linear Order

    Full text link
    When evolving in time the solution of a hyperbolic partial differential equation, it is often desirable to use high order strong stability preserving (SSP) time discretizations. These time discretizations preserve the monotonicity properties satisfied by the spatial discretization when coupled with the first order forward Euler, under a certain time-step restriction. While the allowable time-step depends on both the spatial and temporal discretizations, the contribution of the temporal discretization can be isolated by taking the ratio of the allowable time-step of the high order method to the forward Euler time-step. This ratio is called the strong stability coefficient. The search for high order strong stability time-stepping methods with high order and large allowable time-step had been an active area of research. It is known that implicit SSP Runge-Kutta methods exist only up to sixth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and we can find implicit SSP Runge-Kutta methods of any linear order. In the current work we aim to find very high linear order implicit SSP Runge-Kutta methods that are optimal in terms of allowable time-step. Next, we formulate an optimization problem for implicit-explicit (IMEX) SSP Runge-Kutta methods and find implicit methods with large linear stability regions that pair with known explicit SSP Runge-Kutta methods of orders plin=3,4,6 as well as optimized IMEX SSP Runge-Kutta pairs that have high linear order and nonlinear orders p=2,3,4. These methods are then tested on sample problems to verify order of convergence and to demonstrate the sharpness of the SSP coefficient and the typical behavior of these methods on test problems
    • …
    corecore