3,675 research outputs found

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Differential-Algebraic Equations

    Get PDF
    Differential-Algebraic Equations (DAE) are today an independent field of research, which is gaining in importance and becoming of increasing interest for applications and mathematics itself. This workshop has drawn the balance after about 25 years investigations of DAEs and the research aims of the future were intensively discussed

    Multigrid optimization for space-time discontinuous Galerkin discretizations of advection dominated flows

    Get PDF
    The goal of this research is to optimize multigrid methods for higher order accurate space-time discontinuous Galerkin discretizations. The main analysis tool is discrete Fourier analysis of two- and three-level multigrid algorithms. This gives the spectral radius of the error transformation operator which predicts the asymptotic rate of convergence of the multigrid algorithm. In the optimization process we therefore choose to minimize the spectral radius of the error transformation operator. We specifically consider optimizing h-multigrid methods with explicit Runge-Kutta type smoothers for second and third order accurate space-time discontinuous Galerkin finite element discretizations of the 2D advection-diffusion equation. The optimized schemes are compared with current h-multigrid techniques employing Runge-Kutta type smoothers. Also, the efficiency of h-, p- and hp-multigrid methods for solving the Euler equations of gas dynamics with a higher order accurate space-time DG method is investigated

    Converting DAE models to ODE models: application to reactive Rayleigh distillation

    Get PDF
    This paper illustrates the application of an index reduction method to some differential algebraic equations (DAE) modelling the reactive Rayleigh distillation. After two deflation steps, this DAE is converted to an equivalent first-order explicit ordinary differential equation (ODE). This ODE involves a reduced number of dependent variables, and some evaluations of implicit functions defined, either from the original algebraic constraints, or from the hidden ones. Consistent initial conditions are no longer to be computed; at the opposite of some other index reduction methods, which generate a drift-off effect, the algebraic constraints remain satisfied at any time; and, finally, the computational effort to solve the ODE may be less than the one associated to the original DAE

    HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part II. Optimization of the Runge-Kutta smoother

    Get PDF
    Using a detailed multilevel analysis of the complete hp-Multigrid as Smoother algorithm accurate predictions are obtained of the spectral radius and operator norms of the multigrid error transformation operator. This multilevel analysis is used to optimize the coefficients in the semi-implicit Runge-Kutta smoother, such that the spectral radius of the multigrid error transformation operator is minimal under properly chosen constraints. The Runge-Kutta coefficients for a wide range of cell Reynolds numbers and a detailed analysis of the performance of the hp-MGS algorithm are presented. In addition, the computational complexity of the hp-MGS algorithm is investigated. The hp-MGS algorithm is tested on a fourth order accurate space-time discontinuous Galerkin finite element discretization of the advection-diffusion equation for a number of model problems, which include thin boundary layers and highly stretched meshes, and a non-constant advection velocity. For all test cases excellent multigrid convergence is obtained

    Discrete Fourier analysis of multigrid algorithms

    Get PDF
    The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the hp-Multigrid as Smoother algorithm, which is a new algorithm suitable for higher order accurate discontinuous Galerkin discretizations of advection dominated flows. In order to analyze the performance of the multigrid algorithms the error transformation operator for several linear multigrid algorithms are derived. The operator norm and spectral radius of the multigrid error transformation are then computed using discrete Fourier analysis. First, the main operations in the discrete Fourier analysis are defined, including the aliasing of modes. Next, the Fourier symbol of the multigrid operators is computed and used to obtain the Fourier symbol of the multigrid error transformation operator. In the multilevel analysis, two and three level h-multigrid, both for uniformly and semi-coarsened meshes, are considered, and also the analysis of the hp-Multigrid as Smoother algorithm for three polynomial levels and three uniformly and semi-coarsened meshes. The report concludes with a discussion of the multigrid operator norm and spectral radius. In the appendix some useful auxiliary results are summarized

    Computationally Efficient Steady--State Simulation Algorithms for Finite-Element Models of Electric Machines.

    Full text link
    The finite element method is a powerful tool for analyzing the magnetic characteristics of electric machines, taking account of both complex geometry and nonlinear material properties. When efficiency is the main quantity of interest, loss calculations can be affected significantly due to the development of eddy currents as a result of Faraday’s law. These effects are captured by the periodic steady-state solution of the magnetic diffusion equation. A typical strategy for calculating this solution is to analyze an initial value problem over a time window of sufficient length so that the transient part of the solution becomes negligible. Unfortunately, because the time constants of electric machines are much smaller than their excitation period at peak power, the transient analysis strategy requires simulating the device over many periods to obtain an accurate steady-state solution. Two other categories of algorithms exist for directly calculating the steady-state solution of the magnetic diffusion equation; shooting methods and the harmonic balance method. Shooting methods search for the steady-state solution by solving a periodic boundary value problem. These methods have only been investigated using first order numerical integration techniques. The harmonic balance method is a Fourier spectral method applied in the time dimension. The standard iterative procedures used for the harmonic balance method do not work well for electric machine simulations due to the rotational motion of the rotor. This dissertation proposes several modifications of these steady-state algorithms which improve their overall performance. First, we demonstrate how shooting methods may be implemented efficiently using Runge-Kutta numerical integration methods with mild coefficient restrictions. Second, we develop a preconditioning strategy for the harmonic balance equations which is robust against large time constants, strong nonlinearities, and rotational motion. Third, we present an adaptive framework for refining the solutions based on a local error criterion which further reduces simulation time. Finally, we compare the performance of the algorithms on a practical model problem. This comparison demonstrates the superiority of the improved steady-state analysis methods, and the harmonic balance method in particular, over transient analysis.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113322/1/pries_1.pd
    corecore