31,252 research outputs found

    Run-time risk management in adaptive ICT systems

    No full text
    We will present results of the SERSCIS project related to risk management and mitigation strategies in adaptive multi-stakeholder ICT systems. The SERSCIS approach involves using semantic threat models to support automated design-time threat identification and mitigation analysis. The focus of this paper is the use of these models at run-time for automated threat detection and diagnosis. This is based on a combination of semantic reasoning and Bayesian inference applied to run-time system monitoring data. The resulting dynamic risk management approach is compared to a conventional ISO 27000 type approach, and validation test results presented from an Airport Collaborative Decision Making (A-CDM) scenario involving data exchange between multiple airport service providers

    Resilient Critical Infrastructure Management using Service Oriented Architecture

    No full text
    Abstract—The SERSCIS project aims to support the use of interconnected systems of services in Critical Infrastructure (CI) applications. The problem of system interconnectedness is aptly demonstrated by ‘Airport Collaborative Decision Making’ (ACDM). Failure or underperformance of any of the interlinked ICT systems may compromise the ability of airports to plan their use of resources to sustain high levels of air traffic, or to provide accurate aircraft movement forecasts to the wider European air traffic management systems. The proposed solution is to introduce further SERSCIS ICT components to manage dependability and interdependency. These use semantic models of the critical infrastructure, including its ICT services, to identify faults and potential risks and to increase human awareness of them. Semantics allows information and services to be described in such a way that makes them understandable to computers. Thus when a failure (or a threat of failure) is detected, SERSCIS components can take action to manage the consequences, including changing the interdependency relationships between services. In some cases, the components will be able to take action autonomously — e.g. to manage ‘local’ issues such as the allocation of CPU time to maintain service performance, or the selection of services where there are redundant sources available. In other cases the components will alert human operators so they can take action instead. The goal of this paper is to describe a Service Oriented Architecture (SOA) that can be used to address the management of ICT components and interdependencies in critical infrastructure systems. Index Terms—resilience; QoS; SOA; critical infrastructure, SLA

    Information and communication technology solutions for outdoor navigation in dementia

    Get PDF
    INTRODUCTION: Information and communication technology (ICT) is potentially mature enough to empower outdoor and social activities in dementia. However, actual ICT-based devices have limited functionality and impact, mainly limited to safety. What is an ideal operational framework to enhance this field to support outdoor and social activities? METHODS: Review of literature and cross-disciplinary expert discussion. RESULTS: A situation-aware ICT requires a flexible fine-tuning by stakeholders of system usability and complexity of function, and of user safety and autonomy. It should operate by artificial intelligence/machine learning and should reflect harmonized stakeholder values, social context, and user residual cognitive functions. ICT services should be proposed at the prodromal stage of dementia and should be carefully validated within the life space of users in terms of quality of life, social activities, and costs. DISCUSSION: The operational framework has the potential to produce ICT and services with high clinical impact but requires substantial investment

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Re-reengineering the dream: agility as competitive adaptability

    Get PDF
    Organizational adaptation and transformative change management in technology-based organizations is explored in the context of collaborative alliances. A Re-reengineering approach is outlined in which a new Competitive Adaptability Five-Influences Analysis approach under conditions of collaborative alliance, is described as an alternative to Porter’s Five-Forces Competitive Rivalry Analysis model. Whilst continuous change in technology and the associated effects of technology shock (Dedola & Neri, 2006; Christiano, Eichenbaum & Vigfusson, 2003) are not new constructs, the reality of the industrial age was and is a continuing reduction in timeline for relevance and lifetime for a specific technology and the related skills and expertise base required for its effective implementation. This, combined with increasing pressures for innovation (Tidd & Bessant, 2013) and at times severe impacts from both local and global economic environments (Hitt, Ireland & Hoskisson, 2011) raises serious challenges for contemporary management teams seeking to strategically position a company and its technology base advantageously, relative to its suppliers, competitors and customers, as well as in predictive readiness for future technological change and opportunistic adaptation. In effect, the life-cycle of a technology has become typically one of disruptive change and rapid adjustment, followed by a plateau as a particular technology or process captures and holds its position against minor challenges, eventually to be displaced by yet another alternative (Bower & Christensen, 1995)

    Tools for modelling and simulating migration-based preservation

    No full text
    This report describes two tools for modelling and simulating the costs and risks of using IT storage systems for the long-term archiving of file-based AV assets. The tools include a model of storage costs, the ingest and access of files, the possibility of data corruption and loss from a range of mechanisms, and the impact of having limited resources with which to fulfill access requests and preservation actions. Applications include archive planning, development of a technology strategy, cost estimation for business planning, operational decision support, staff training and generally promoting awareness of the issues and challenges archives face in digital preservation
    corecore