953 research outputs found

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    Blackboard System Generator (BSG): An Alternative Distributed Problem-Solving Paradigm

    Get PDF
    The classical blackboard model employs a number of relaxations of team decision theory that are commonly organized into three panels of AI heuristics, including: 1) a shared information panel that offers a capability for ensuring agent knowledge sharing, 2) a contract formalism for the agent and event scheduling, coordinating, and control panel, and 3) a blackboard panel for metalevel planning and guidance that offers whole situation recognition, top down reasoning, and adaptive learning. The nature and implications of these relaxations are explained in terms of the blackboard system generator (BSG) and via comparisons to what is done in other blackboard shells. Particular attention is paid to theoretical relaxations inherent in the classical blackboard model and to research opportunities arising as a result. Progress made to date to counteract adverse effects of some of these relaxations is described in terms of a project management/work breakdown paradigm adopted in BSG that: 1) alleviates the knowledge engineering bottlenecks of traditional blackboards and that provides BSG with a semantic rather than just syntactic understanding of blackboard control and scheduling; 2) allows a distributed problem-solving capability for connecting agents at virtual addresses on a logical network and that permits concurrent processing on any machine available on the network; 3) establishes an open architecture that includes techniques for integrating preexisting agent methods (e.g., expert systems, procedures, or data bases) while laying the foundation for assessing the impact of “black boxes” on the global and local objective functions; and 4) utilizes project management techniques for team agents planning as well as an analogical reasoner subsystem for BSG metaplanning and generic controlled learning. This latter item is supported by a connectionist scheme for its associative memory. The techniques of each of the three panels and of the four sets of paradigm-related advances are described along with selected results from classroom teaching experiments and from three applications using BSG to date

    Language run-time systems:An overview

    Get PDF
    The proliferation of high-level programming languages with advanced language features and the need for portability across increasingly heterogeneous and hierarchical architectures require a sophisticated run-time system to manage program execution and available resources. Additional benefits include isolated execution of untrusted code and the potential for dynamic optimisation, among others. This paper provides a high-level overview of language run-time systems with a focus on execution models, support for concurrency and parallelism, memory management, and communication, whilst briefly mentioning synchronisation, monitoring, and adaptive policy control. Two alternative approaches to run-time system design are presented and several challenges for future research are outlined. References to both seminal and recent work are provided

    Robot graphic simulation testbed

    Get PDF
    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts

    DSHOP: Distributed simple hierarchical ordered planner.

    Get PDF
    Planning has been an important subject in the area of Artificial Intelligence (AI) for over three decades. Planning is the problem of seeking a series of actions (that is, a plan) that will accomplish a desired goal. Most planning approaches rely on a single processor or a single-agent paradigm. Unfortunately, in a complex world, a single agent may not be sufficient to optimally solve the problem. Distributed Planning is a sub-field of Distributed AI that involves multi-agents working together to solve large planning problems. Distribution may speed up the traditional planning system through parallelism. Hierarchical Task Network (HTN) planning is an AI planning methodology that creates plans by task decomposition. SHOP (Simple Hierarchical Ordered Planner) is a domain-independent HTN planning system designed by Dana Nau et al. that plans for tasks in the same order that they will later be executed. This thesis aims at designing and implementing a distributed version of SHOP (that is, DSHOP) and running it on a high performance distributed system called SHARCNET. The implementation is based upon Message Passing Interface (MPI), that is, a library of functions used to achieve parallelism via message-passing. We investigate two approaches to share work between processors: state-copying and state-recomputation. We implemented a state-copying based DSHOP system (DSHOPC), and a state-recomputation based DSHOP system (DSHOPR). We compared these two implementations of DSHOP with the Java version of SHOP on a set of randomly generated artificial domains. A set of experimental results has been used to evaluate the performance of the DSHOP algorithm.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .L83. Source: Masters Abstracts International, Volume: 43-01, page: 0240. Advisers: Scott Goodwin; Froduald Kabanza. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Decision-making and problem-solving methods in automation technology

    Get PDF
    The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming

    Parallel evaluation strategies for lazy data structures in Haskell

    Get PDF
    Conventional parallel programming is complex and error prone. To improve programmer productivity, we need to raise the level of abstraction with a higher-level programming model that hides many parallel coordination aspects. Evaluation strategies use non-strictness to separate the coordination and computation aspects of a Glasgow parallel Haskell (GpH) program. This allows the specification of high level parallel programs, eliminating the low-level complexity of synchronisation and communication associated with parallel programming. This thesis employs a data-structure-driven approach for parallelism derived through generic parallel traversal and evaluation of sub-components of data structures. We focus on evaluation strategies over list, tree and graph data structures, allowing re-use across applications with minimal changes to the sequential algorithm. In particular, we develop novel evaluation strategies for tree data structures, using core functional programming techniques for coordination control, achieving more flexible parallelism. We use non-strictness to control parallelism more flexibly. We apply the notion of fuel as a resource that dictates parallelism generation, in particular, the bi-directional flow of fuel, implemented using a circular program definition, in a tree structure as a novel way of controlling parallel evaluation. This is the first use of circular programming in evaluation strategies and is complemented by a lazy function for bounding the size of sub-trees. We extend these control mechanisms to graph structures and demonstrate performance improvements on several parallel graph traversals. We combine circularity for control for improved performance of strategies with circularity for computation using circular data structures. In particular, we develop a hybrid traversal strategy for graphs, exploiting breadth-first order for exposing parallelism initially, and then proceeding with a depth-first order to minimise overhead associated with a full parallel breadth-first traversal. The efficiency of the tree strategies is evaluated on a benchmark program, and two non-trivial case studies: a Barnes-Hut algorithm for the n-body problem and sparse matrix multiplication, both using quad-trees. We also evaluate a graph search algorithm implemented using the various traversal strategies. We demonstrate improved performance on a server-class multicore machine with up to 48 cores, with the advanced fuel splitting mechanisms proving to be more flexible in throttling parallelism. To guide the behaviour of the strategies, we develop heuristics-based parameter selection to select their specific control parameters

    An analysis of the application of AI to the development of intelligent aids for flight crew tasks

    Get PDF
    This report presents the results of a study aimed at developing a basis for applying artificial intelligence to the flight deck environment of commercial transport aircraft. In particular, the study was comprised of four tasks: (1) analysis of flight crew tasks, (2) survey of the state-of-the-art of relevant artificial intelligence areas, (3) identification of human factors issues relevant to intelligent cockpit aids, and (4) identification of artificial intelligence areas requiring further research
    corecore