115 research outputs found

    Towards Data Protection Compliance

    Get PDF
    Privacy and data protection are fundamental issues nowadays for every organization. This paper calls for the development of methods, techniques and infrastructure to allow the deployment of privacy-aware IT systems, in which humans are integral part of the organizational processes and accountable for their possible misconduct. In particular, we discuss the challenges to be addressed in order to improve organizations privacy practices, as well as the approach to ensure compliance with legal requirements and increasing efficiency

    Verifying Policy Enforcers

    Get PDF
    Policy enforcers are sophisticated runtime components that can prevent failures by enforcing the correct behavior of the software. While a single enforcer can be easily designed focusing only on the behavior of the application that must be monitored, the effect of multiple enforcers that enforce different policies might be hard to predict. So far, mechanisms to resolve interferences between enforcers have been based on priority mechanisms and heuristics. Although these methods provide a mechanism to take decisions when multiple enforcers try to affect the execution at a same time, they do not guarantee the lack of interference on the global behavior of the system. In this paper we present a verification strategy that can be exploited to discover interferences between sets of enforcers and thus safely identify a-priori the enforcers that can co-exist at run-time. In our evaluation, we experimented our verification method with several policy enforcers for Android and discovered some incompatibilities.Comment: Oliviero Riganelli, Daniela Micucci, Leonardo Mariani, and Yli\`es Falcone. Verifying Policy Enforcers. Proceedings of 17th International Conference on Runtime Verification (RV), 2017. (to appear

    Enforcing Information Flow Security Properties in Cyber-Physical Systems: A Generalized Framework Based on Compensation

    Get PDF
    This paper presents a general theory of event compensation as an information flow security enforcement mechanism for Cyber-Physical Systems (CPSs). The fundamental research problem being investigated is that externally observable events in modern CPSs have the propensity to divulge sensitive settings to adversaries, resulting in a confidentiality violation. This is a less studied yet emerging concern in modern system security. A viable method to mitigate such violations is to use information flow security based enforcement mechanisms since access control based security models cannot impose restrictions on information propagation. Further, the disjoint nature of security analysis is not appropriate for systems with highly integrated physical and cyber infrastructures. The proposed compensation based security framework is foundational work that unifies cyber and physical aspects of security through the shared semantics of information flow. A DC circuit example is presented to demonstrate this concept

    Runtime Enforcement for Component-Based Systems

    Get PDF
    Runtime enforcement is an increasingly popular and effective dynamic validation technique aiming to ensure the correct runtime behavior (w.r.t. a formal specification) of systems using a so-called enforcement monitor. In this paper we introduce runtime enforcement of specifications on component-based systems (CBS) modeled in the BIP (Behavior, Interaction and Priority) framework. BIP is a powerful and expressive component-based framework for formal construction of heterogeneous systems. However, because of BIP expressiveness, it remains difficult to enforce at design-time complex behavioral properties. First we propose a theoretical runtime enforcement framework for CBS where we delineate a hierarchy of sets of enforceable properties (i.e., properties that can be enforced) according to the number of observational steps a system is allowed to deviate from the property (i.e., the notion of k-step enforceability). To ensure the observational equivalence between the correct executions of the initial system and the monitored system, we show that i) only stutter-invariant properties should be enforced on CBS with our monitors, ii) safety properties are 1-step enforceable. Given an abstract enforcement monitor (as a finite-state machine) for some 1-step enforceable specification, we formally instrument (at relevant locations) a given BIP system to integrate the monitor. At runtime, the monitor observes and automatically avoids any error in the behavior of the system w.r.t. the specification. Our approach is fully implemented in an available tool that we used to i) avoid deadlock occurrences on a dining philosophers benchmark, and ii) ensure the correct placement of robots on a map.Comment: arXiv admin note: text overlap with arXiv:1109.5505 by other author

    Monitoring Networks through Multiparty Session Types

    Get PDF
    In large-scale distributed infrastructures, applications are realised through communications among distributed components. The need for methods for assuring safe interactions in such environments is recognized, however the existing frameworks, relying on centralised verification or restricted specification methods, have limited applicability. This paper proposes a new theory of monitored π-calculus with dynamic usage of multiparty session types (MPST), offering a rigorous foundation for safety assurance of distributed components which asynchronously communicate through multiparty sessions. Our theory establishes a framework for semantically precise decentralised run-time enforcement and provides reasoning principles over monitored distributed applications, which complement existing static analysis techniques. We introduce asynchrony through the means of explicit routers and global queues, and propose novel equivalences between networks, that capture the notion of interface equivalence, i.e. equating networks offering the same services to a user. We illustrate our static-dynamic analysis system with an ATM protocol as a running example and justify our theory with results: satisfaction equivalence, local/global safety and transparency, and session fidelity
    corecore