2,088 research outputs found

    Run-Time Adaptability of Synchronization Policies in Concurrent Object Oriented Languages

    Full text link

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    A common distributed language approach to software integration

    Get PDF
    An important objective in software integration is the development of techniques to allow programs written in different languages to function together. Several approaches are discussed toward achieving this objective and the Common Distributed Language Approach is presented as the approach of choice

    Simplified Distributed Programming with Micro Objects

    Full text link
    Developing large-scale distributed applications can be a daunting task. object-based environments have attempted to alleviate problems by providing distributed objects that look like local objects. We advocate that this approach has actually only made matters worse, as the developer needs to be aware of many intricate internal details in order to adequately handle partial failures. The result is an increase of application complexity. We present an alternative in which distribution transparency is lessened in favor of clearer semantics. In particular, we argue that a developer should always be offered the unambiguous semantics of local objects, and that distribution comes from copying those objects to where they are needed. We claim that it is often sufficient to provide only small, immutable objects, along with facilities to group objects into clusters.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Towards a Taxonomy of Aspect-Oriented Programming.

    Get PDF
    As programs continue to increase in size, it has become increasingly difficult to separate concerns into well localized modules, which leads to code tangling- crosscutting code spread throughout several modules. Thus, Aspect-Oriented Programming (AOP) offers a solution to creating modules with little or no crosscutting concerns. AOP presents the notion of aspects, and demonstrates how crosscutting concerns can be taken out of modules and placed into a centralized location. In this paper, a taxonomy of aspect-oriented programming, as well as a basic overview and introduction of AOP, will be presented in order to assist future researchers in getting started on additional research on the topic. To form the taxonomy, over four-hundred research articles were organized into fifteen different primary categories coupled with sub-categories, which shows where some of the past research has been focused. In addition, trends of the research were evaluated and paths for future exploration are suggested

    A Configurable Transport Layer for CAF

    Full text link
    The message-driven nature of actors lays a foundation for developing scalable and distributed software. While the actor itself has been thoroughly modeled, the message passing layer lacks a common definition. Properties and guarantees of message exchange often shift with implementations and contexts. This adds complexity to the development process, limits portability, and removes transparency from distributed actor systems. In this work, we examine actor communication, focusing on the implementation and runtime costs of reliable and ordered delivery. Both guarantees are often based on TCP for remote messaging, which mixes network transport with the semantics of messaging. However, the choice of transport may follow different constraints and is often governed by deployment. As a first step towards re-architecting actor-to-actor communication, we decouple the messaging guarantees from the transport protocol. We validate our approach by redesigning the network stack of the C++ Actor Framework (CAF) so that it allows to combine an arbitrary transport protocol with additional functions for remote messaging. An evaluation quantifies the cost of composability and the impact of individual layers on the entire stack

    Programming distributed and adaptable autonomous components--the GCM/ProActive framework

    Get PDF
    International audienceComponent-oriented software has become a useful tool to build larger and more complex systems by describing the application in terms of encapsulated, loosely coupled entities called components. At the same time, asynchronous programming patterns allow for the development of efficient distributed applications. While several component models and frameworks have been proposed, most of them tightly integrate the component model with the middleware they run upon. This intertwining is generally implicit and not discussed, leading to entangled, hard to maintain code. This article describes our efforts in the development of the GCM/ProActive framework for providing distributed and adaptable autonomous components. GCM/ProActive integrates a component model designed for execution on large-scale environments, with a programming model based on active objects allowing a high degree of distribution and concurrency. This new integrated model provides a more powerful development, composition, and execution environment than other distributed component frameworks. We illustrate that GCM/ProActive is particularly adapted to the programming of autonomic component systems, and to the integration into a service-oriented environment

    Effective memory management for mobile environments

    Get PDF
    Smartphones, tablets, and other mobile devices exhibit vastly different constraints compared to regular or classic computing environments like desktops, laptops, or servers. Mobile devices run dozens of so-called “apps” hosted by independent virtual machines (VM). All these VMs run concurrently and each VM deploys purely local heuristics to organize resources like memory, performance, and power. Such a design causes conflicts across all layers of the software stack, calling for the evaluation of VMs and the optimization techniques specific for mobile frameworks. In this dissertation, we study the design of managed runtime systems for mobile platforms. More specifically, we deepen the understanding of interactions between garbage collection (GC) and system layers. We develop tools to monitor the memory behavior of Android-based apps and to characterize GC performance, leading to the development of new techniques for memory management that address energy constraints, time performance, and responsiveness. We implement a GC-aware frequency scaling governor for Android devices. We also explore the tradeoffs of power and performance in vivo for a range of realistic GC variants, with established benchmarks and real applications running on Android virtual machines. We control for variation due to dynamic voltage and frequency scaling (DVFS), Just-in-time (JIT) compilation, and across established dimensions of heap memory size and concurrency. Finally, we provision GC as a global service that collects statistics from all running VMs and then makes an informed decision that optimizes across all them (and not just locally), and across all layers of the stack. Our evaluation illustrates the power of such a central coordination service and garbage collection mechanism in improving memory utilization, throughput, and adaptability to user activities. In fact, our techniques aim at a sweet spot, where total on-chip energy is reduced (20–30%) with minimal impact on throughput and responsiveness (5–10%). The simplicity and efficacy of our approach reaches well beyond the usual optimization techniques

    AOP: Does it Make Sense ? The Case of Concurrency and Failures

    Get PDF
    Concurrency and failures are fundamental problems in distributed computing. One likes to think that the mechanisms needed to address these problems can be separated from the rest of the distributed application: in modern words, these mechanisms could be aspectized. Does this however make sense? This paper relates an experience that conveys our initial and indeed biased intuition that the answer is in general no. Except for simple academic examples, it is hard and even potentially dangerous to separate concurrency control and failure management from the actual application. We point out the very facts that (1) an aspect-oriented language can, pretty much like a macro language, be beneficial for code factorization (but should be reserved to experienced programmers), and (2) concurrency and failures are particularly hard to aspectize because they are usually part of the phenomenon that objects should simulate. They are in this sense different than other concerns, like for instance tracing, which might be easier to aspectize
    • 

    corecore