6,796 research outputs found

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    Mathematical and computer modeling of electro-optic systems using a generic modeling approach

    Get PDF
    The conventional approach to modelling electro-optic sensor systems is to develop separate models for individual systems or classes of system, depending on the detector technology employed in the sensor and the application. However, this ignores commonality in design and in components of these systems. A generic approach is presented for modelling a variety of sensor systems operating in the infrared waveband that also allows systems to be modelled with different levels of detail and at different stages of the product lifecycle. The provision of different model types (parametric and image-flow descriptions) within the generic framework can allow valuable insights to be gained

    Abnormal Event Detection in Videos using Spatiotemporal Autoencoder

    Full text link
    We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps

    HEP-2 CELL IMAGES FLUORESCENCE INTENSITY CLASSIFICATION TO DETERMINE POSITIVITY BASED ON NEURAL NETWORK AMIN

    Get PDF
    Nowadays, the recommended method for detection of anti-nuclear auto-antibodies is by using Indirect Immunofluorescence (IIF). The increasing of test demands on classification of Hep-2 cell images force the physicians to carry out the test faster, resulting bad quality results. IIF diagnosis requires estimating the fluorescence intensity of the serum and this will be observed. As there are subjective and inter/intra laboratory perception of the results, the development of computer-aided diagnosis (CAD) tools is used to support the decision. In this report, we propose the classification technique based on Artificial Neural Network (ANN) that can classify the Hep-2 cell images into 3 classes namely positive, negative and intermediate,specifically to determine the presence of antinuclear autoantibodies (ANA)
    • …
    corecore