122 research outputs found

    Stance detection on social media: State of the art and trends

    Get PDF
    Stance detection on social media is an emerging opinion mining paradigm for various social and political applications in which sentiment analysis may be sub-optimal. There has been a growing research interest for developing effective methods for stance detection methods varying among multiple communities including natural language processing, web science, and social computing. This paper surveys the work on stance detection within those communities and situates its usage within current opinion mining techniques in social media. It presents an exhaustive review of stance detection techniques on social media, including the task definition, different types of targets in stance detection, features set used, and various machine learning approaches applied. The survey reports state-of-the-art results on the existing benchmark datasets on stance detection, and discusses the most effective approaches. In addition, this study explores the emerging trends and different applications of stance detection on social media. The study concludes by discussing the gaps in the current existing research and highlights the possible future directions for stance detection on social media.Comment: We request withdrawal of this article sincerely. We will re-edit this paper. Please withdraw this article before we finish the new versio

    False News On Social Media: A Data-Driven Survey

    Full text link
    In the past few years, the research community has dedicated growing interest to the issue of false news circulating on social networks. The widespread attention on detecting and characterizing false news has been motivated by considerable backlashes of this threat against the real world. As a matter of fact, social media platforms exhibit peculiar characteristics, with respect to traditional news outlets, which have been particularly favorable to the proliferation of deceptive information. They also present unique challenges for all kind of potential interventions on the subject. As this issue becomes of global concern, it is also gaining more attention in academia. The aim of this survey is to offer a comprehensive study on the recent advances in terms of detection, characterization and mitigation of false news that propagate on social media, as well as the challenges and the open questions that await future research on the field. We use a data-driven approach, focusing on a classification of the features that are used in each study to characterize false information and on the datasets used for instructing classification methods. At the end of the survey, we highlight emerging approaches that look most promising for addressing false news

    Rumor Detection with Diverse Counterfactual Evidence

    Full text link
    The growth in social media has exacerbated the threat of fake news to individuals and communities. This draws increasing attention to developing efficient and timely rumor detection methods. The prevailing approaches resort to graph neural networks (GNNs) to exploit the post-propagation patterns of the rumor-spreading process. However, these methods lack inherent interpretation of rumor detection due to the black-box nature of GNNs. Moreover, these methods suffer from less robust results as they employ all the propagation patterns for rumor detection. In this paper, we address the above issues with the proposed Diverse Counterfactual Evidence framework for Rumor Detection (DCE-RD). Our intuition is to exploit the diverse counterfactual evidence of an event graph to serve as multi-view interpretations, which are further aggregated for robust rumor detection results. Specifically, our method first designs a subgraph generation strategy to efficiently generate different subgraphs of the event graph. We constrain the removal of these subgraphs to cause the change in rumor detection results. Thus, these subgraphs naturally serve as counterfactual evidence for rumor detection. To achieve multi-view interpretation, we design a diversity loss inspired by Determinantal Point Processes (DPP) to encourage diversity among the counterfactual evidence. A GNN-based rumor detection model further aggregates the diverse counterfactual evidence discovered by the proposed DCE-RD to achieve interpretable and robust rumor detection results. Extensive experiments on two real-world datasets show the superior performance of our method. Our code is available at https://github.com/Vicinity111/DCE-RD
    corecore