1,071 research outputs found

    Gossip vs. Markov Chains, and Randomness-Efficient Rumor Spreading

    Get PDF
    We study gossip algorithms for the rumor spreading problem which asks one node to deliver a rumor to all nodes in an unknown network. We present the first protocol for any expander graph GG with nn nodes such that, the protocol informs every node in O(log⁥n)O(\log n) rounds with high probability, and uses O~(log⁥n)\tilde{O}(\log n) random bits in total. The runtime of our protocol is tight, and the randomness requirement of O~(log⁥n)\tilde{O}(\log n) random bits almost matches the lower bound of Ω(log⁥n)\Omega(\log n) random bits for dense graphs. We further show that, for many graph families, polylogarithmic number of random bits in total suffice to spread the rumor in O(polylog⁥n)O(\mathrm{poly}\log n) rounds. These results together give us an almost complete understanding of the randomness requirement of this fundamental gossip process. Our analysis relies on unexpectedly tight connections among gossip processes, Markov chains, and branching programs. First, we establish a connection between rumor spreading processes and Markov chains, which is used to approximate the rumor spreading time by the mixing time of Markov chains. Second, we show a reduction from rumor spreading processes to branching programs, and this reduction provides a general framework to derandomize gossip processes. In addition to designing rumor spreading protocols, these novel techniques may have applications in studying parallel and multiple random walks, and randomness complexity of distributed algorithms.Comment: 41 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:1304.135

    On the Role of Mobility for Multi-message Gossip

    Full text link
    We consider information dissemination in a large nn-user wireless network in which kk users wish to share a unique message with all other users. Each of the nn users only has knowledge of its own contents and state information; this corresponds to a one-sided push-only scenario. The goal is to disseminate all messages efficiently, hopefully achieving an order-optimal spreading rate over unicast wireless random networks. First, we show that a random-push strategy -- where a user sends its own or a received packet at random -- is order-wise suboptimal in a random geometric graph: specifically, Ω(n)\Omega(\sqrt{n}) times slower than optimal spreading. It is known that this gap can be closed if each user has "full" mobility, since this effectively creates a complete graph. We instead consider velocity-constrained mobility where at each time slot the user moves locally using a discrete random walk with velocity v(n)v(n) that is much lower than full mobility. We propose a simple two-stage dissemination strategy that alternates between individual message flooding ("self promotion") and random gossiping. We prove that this scheme achieves a close to optimal spreading rate (within only a logarithmic gap) as long as the velocity is at least v(n)=ω(log⁥n/k)v(n)=\omega(\sqrt{\log n/k}). The key insight is that the mixing property introduced by the partial mobility helps users to spread in space within a relatively short period compared to the optimal spreading time, which macroscopically mimics message dissemination over a complete graph.Comment: accepted to IEEE Transactions on Information Theory, 201

    Principal Patterns on Graphs: Discovering Coherent Structures in Datasets

    Get PDF
    Graphs are now ubiquitous in almost every field of research. Recently, new research areas devoted to the analysis of graphs and data associated to their vertices have emerged. Focusing on dynamical processes, we propose a fast, robust and scalable framework for retrieving and analyzing recurring patterns of activity on graphs. Our method relies on a novel type of multilayer graph that encodes the spreading or propagation of events between successive time steps. We demonstrate the versatility of our method by applying it on three different real-world examples. Firstly, we study how rumor spreads on a social network. Secondly, we reveal congestion patterns of pedestrians in a train station. Finally, we show how patterns of audio playlists can be used in a recommender system. In each example, relevant information previously hidden in the data is extracted in a very efficient manner, emphasizing the scalability of our method. With a parallel implementation scaling linearly with the size of the dataset, our framework easily handles millions of nodes on a single commodity server

    Bounds on the Voter Model in Dynamic Networks

    Get PDF
    In the voter model, each node of a graph has an opinion, and in every round each node chooses independently a random neighbour and adopts its opinion. We are interested in the consensus time, which is the first point in time where all nodes have the same opinion. We consider dynamic graphs in which the edges are rewired in every round (by an adversary) giving rise to the graph sequence G1,G2,
G_1, G_2, \dots , where we assume that GiG_i has conductance at least ϕi\phi_i. We assume that the degrees of nodes don't change over time as one can show that the consensus time can become super-exponential otherwise. In the case of a sequence of dd-regular graphs, we obtain asymptotically tight results. Even for some static graphs, such as the cycle, our results improve the state of the art. Here we show that the expected number of rounds until all nodes have the same opinion is bounded by O(m/(dmin⋅ϕ))O(m/(d_{min} \cdot \phi)), for any graph with mm edges, conductance ϕ\phi, and degrees at least dmind_{min}. In addition, we consider a biased dynamic voter model, where each opinion ii is associated with a probability PiP_i, and when a node chooses a neighbour with that opinion, it adopts opinion ii with probability PiP_i (otherwise the node keeps its current opinion). We show for any regular dynamic graph, that if there is an Ï”>0\epsilon>0 difference between the highest and second highest opinion probabilities, and at least Ω(log⁥n)\Omega(\log n) nodes have initially the opinion with the highest probability, then all nodes adopt w.h.p. that opinion. We obtain a bound on the convergences time, which becomes O(log⁥n/ϕ)O(\log n/\phi) for static graphs

    Asynchronous Rumor Spreading in Dynamic Graphs

    Get PDF
    • 

    corecore