85 research outputs found

    Inapproximability of Maximum Biclique Problems, Minimum kk-Cut and Densest At-Least-kk-Subgraph from the Small Set Expansion Hypothesis

    Full text link
    The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose edge expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove inapproximability results for the following graph problems based on this hypothesis: - Maximum Edge Biclique (MEB): given a bipartite graph GG, find a complete bipartite subgraph of GG with maximum number of edges. - Maximum Balanced Biclique (MBB): given a bipartite graph GG, find a balanced complete bipartite subgraph of GG with maximum number of vertices. - Minimum kk-Cut: given a weighted graph GG, find a set of edges with minimum total weight whose removal partitions GG into kk connected components. - Densest At-Least-kk-Subgraph (DALkkS): given a weighted graph GG, find a set SS of at least kk vertices such that the induced subgraph on SS has maximum density (the ratio between the total weight of edges and the number of vertices). We show that, assuming SSEH and NP \nsubseteq BPP, no polynomial time algorithm gives n1εn^{1 - \varepsilon}-approximation for MEB or MBB for every constant ε>0\varepsilon > 0. Moreover, assuming SSEH, we show that it is NP-hard to approximate Minimum kk-Cut and DALkkS to within (2ε)(2 - \varepsilon) factor of the optimum for every constant ε>0\varepsilon > 0. The ratios in our results are essentially tight since trivial algorithms give nn-approximation to both MEB and MBB and efficient 22-approximation algorithms are known for Minimum kk-Cut [SV95] and DALkkS [And07, KS09]. Our first result is proved by combining a technique developed by Raghavendra et al. [RST12] to avoid locality of gadget reductions with a generalization of Bansal and Khot's long code test [BK09] whereas our second result is shown via elementary reductions.Comment: A preliminary version of this work will appear at ICALP 2017 under a different title "Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

    Finding Connected Dense kk-Subgraphs

    Full text link
    Given a connected graph GG on nn vertices and a positive integer knk\le n, a subgraph of GG on kk vertices is called a kk-subgraph in GG. We design combinatorial approximation algorithms for finding a connected kk-subgraph in GG such that its density is at least a factor Ω(max{n2/5,k2/n2})\Omega(\max\{n^{-2/5},k^2/n^2\}) of the density of the densest kk-subgraph in GG (which is not necessarily connected). These particularly provide the first non-trivial approximations for the densest connected kk-subgraph problem on general graphs

    Detecting High Log-Densities -- an O(n^1/4) Approximation for Densest k-Subgraph

    Full text link
    In the Densest k-Subgraph problem, given a graph G and a parameter k, one needs to find a subgraph of G induced on k vertices that contains the largest number of edges. There is a significant gap between the best known upper and lower bounds for this problem. It is NP-hard, and does not have a PTAS unless NP has subexponential time algorithms. On the other hand, the current best known algorithm of Feige, Kortsarz and Peleg, gives an approximation ratio of n^(1/3-epsilon) for some specific epsilon > 0 (estimated at around 1/60). We present an algorithm that for every epsilon > 0 approximates the Densest k-Subgraph problem within a ratio of n^(1/4+epsilon) in time n^O(1/epsilon). In particular, our algorithm achieves an approximation ratio of O(n^1/4) in time n^O(log n). Our algorithm is inspired by studying an average-case version of the problem where the goal is to distinguish random graphs from graphs with planted dense subgraphs. The approximation ratio we achieve for the general case matches the distinguishing ratio we obtain for this planted problem. At a high level, our algorithms involve cleverly counting appropriately defined trees of constant size in G, and using these counts to identify the vertices of the dense subgraph. Our algorithm is based on the following principle. We say that a graph G(V,E) has log-density alpha if its average degree is Theta(|V|^alpha). The algorithmic core of our result is a family of algorithms that output k-subgraphs of nontrivial density whenever the log-density of the densest k-subgraph is larger than the log-density of the host graph.Comment: 23 page

    A Novel Approach to Finding Near-Cliques: The Triangle-Densest Subgraph Problem

    Full text link
    Many graph mining applications rely on detecting subgraphs which are near-cliques. There exists a dichotomy between the results in the existing work related to this problem: on the one hand the densest subgraph problem (DSP) which maximizes the average degree over all subgraphs is solvable in polynomial time but for many networks fails to find subgraphs which are near-cliques. On the other hand, formulations that are geared towards finding near-cliques are NP-hard and frequently inapproximable due to connections with the Maximum Clique problem. In this work, we propose a formulation which combines the best of both worlds: it is solvable in polynomial time and finds near-cliques when the DSP fails. Surprisingly, our formulation is a simple variation of the DSP. Specifically, we define the triangle densest subgraph problem (TDSP): given G(V,E)G(V,E), find a subset of vertices SS^* such that τ(S)=maxSVt(S)S\tau(S^*)=\max_{S \subseteq V} \frac{t(S)}{|S|}, where t(S)t(S) is the number of triangles induced by the set SS. We provide various exact and approximation algorithms which the solve the TDSP efficiently. Furthermore, we show how our algorithms adapt to the more general problem of maximizing the kk-clique average density. Finally, we provide empirical evidence that the TDSP should be used whenever the output of the DSP fails to output a near-clique.Comment: 42 page
    corecore