21,009 research outputs found

    Geosimulation and spatial analysis: Linking Cellular Automata and Neural Networks to Forecast Land Use/Cover Change

    Get PDF
    The geosimulation is an emergent field of inquiry that advocates the use of computational intensive methods of spatial analysis as the ones that appeal to heuristic search, neural nets and cellular automata. This work presents a method to simulate the land use/cover evolution in a rural/urban fringe reality, linking neural networks and cellular automata (CA) in a GIS environment. The simulation of such alterations appealing solely to cellular automata is not convenient, because these models, in its more conventional form, comprise limitations in the definition of the space parameters and the transition rules. In this work a neural net is used to survey the importance degree that each prediction variable (probability) has in the geographic constraints. These variables are gotten with resource to GIS.info:eu-repo/semantics/publishedVersio

    Neural nets - their use and abuse for small data sets

    Get PDF
    Neural nets can be used for non-linear classification and regression models. They have a big advantage over conventional statistical tools in that it is not necessary to assume any mathematical form for the functional relationship between the variables. However, they also have a few associated problems chief of which are probably the risk of over-parametrization in the absence of P-values, the lack of appropriate diagnostic tools and the difficulties associated with model interpretation. The first of these problems is particularly important in the case of small data sets. These problems are investigated in the context of real market research data involving non-linear regression and discriminant analysis. In all cases we compare the results of the non-linear neural net models with those of conventional linear statistical methods. Our conclusion is that the theory and software for neural networks has some way to go before the above problems will be solved

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    Process Mining of Programmable Logic Controllers: Input/Output Event Logs

    Full text link
    This paper presents an approach to model an unknown Ladder Logic based Programmable Logic Controller (PLC) program consisting of Boolean logic and counters using Process Mining techniques. First, we tap the inputs and outputs of a PLC to create a data flow log. Second, we propose a method to translate the obtained data flow log to an event log suitable for Process Mining. In a third step, we propose a hybrid Petri net (PN) and neural network approach to approximate the logic of the actual underlying PLC program. We demonstrate the applicability of our proposed approach on a case study with three simulated scenarios

    Using fuzzy logic to integrate neural networks and knowledge-based systems

    Get PDF
    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems
    • …
    corecore