23 research outputs found

    Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

    Get PDF

    Trust, Accountability, and Autonomy in Knowledge Graph-based AI for Self-determination

    Full text link
    Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making and a wide range of Artificial Intelligence (AI) services across major corporations such as Google, Walmart, and AirBnb. KGs complement Machine Learning (ML) algorithms by providing data context and semantics, thereby enabling further inference and question-answering capabilities. The integration of KGs with neuronal learning (e.g., Large Language Models (LLMs)) is currently a topic of active research, commonly named neuro-symbolic AI. Despite the numerous benefits that can be accomplished with KG-based AI, its growing ubiquity within online services may result in the loss of self-determination for citizens as a fundamental societal issue. The more we rely on these technologies, which are often centralised, the less citizens will be able to determine their own destinies. To counter this threat, AI regulation, such as the European Union (EU) AI Act, is being proposed in certain regions. The regulation sets what technologists need to do, leading to questions concerning: How can the output of AI systems be trusted? What is needed to ensure that the data fuelling and the inner workings of these artefacts are transparent? How can AI be made accountable for its decision-making? This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination. Drawing upon this conceptual framework, challenges and opportunities for citizen self-determination are illustrated and analysed in a real-world scenario. As a result, we propose a research agenda aimed at accomplishing the recommended objectives

    Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination

    Get PDF
    Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making and a wide range of Artificial Intelligence (AI) services across major corporations such as Google, Walmart, and AirBnb. KGs complement Machine Learning (ML) algorithms by providing data context and semantics, thereby enabling further inference and question-answering capabilities. The integration of KGs with neuronal learning (e.g., Large Language Models (LLMs)) is currently a topic of active research, commonly named neuro-symbolic AI. Despite the numerous benefits that can be accomplished with KG-based AI, its growing ubiquity within online services may result in the loss of self-determination for citizens as a fundamental societal issue. The more we rely on these technologies, which are often centralised, the less citizens will be able to determine their own destinies. To counter this threat, AI regulation, such as the European Union (EU) AI Act, is being proposed in certain regions. The regulation sets what technologists need to do, leading to questions concerning How the output of AI systems can be trusted? What is needed to ensure that the data fuelling and the inner workings of these artefacts are transparent? How can AI be made accountable for its decision-making? This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination. Drawing upon this conceptual framework, challenges and opportunities for citizen self-determination are illustrated and analysed in a real-world scenario. As a result, we propose a research agenda aimed at accomplishing the recommended objectives

    Automating interpretations of trustworthiness

    Get PDF

    28th International Symposium on Temporal Representation and Reasoning (TIME 2021)

    Get PDF
    The 28th International Symposium on Temporal Representation and Reasoning (TIME 2021) was planned to take place in Klagenfurt, Austria, but had to move to an online conference due to the insecurities and restrictions caused by the pandemic. Since its frst edition in 1994, TIME Symposium is quite unique in the panorama of the scientifc conferences as its main goal is to bring together researchers from distinct research areas involving the management and representation of temporal data as well as the reasoning about temporal aspects of information. Moreover, TIME Symposium aims to bridge theoretical and applied research, as well as to serve as an interdisciplinary forum for exchange among researchers from the areas of artifcial intelligence, database management, logic and verifcation, and beyond

    Semantic Selection of Internet Sources through SWRL Enabled OWL Ontologies

    Get PDF
    This research examines the problem of Information Overload (IO) and give an overview of various attempts to resolve it. Furthermore, argue that instead of fighting IO, it is advisable to start learning how to live with it. It is unlikely that in modern information age, where users are producer and consumer of information, the amount of data and information generated would decrease. Furthermore, when managing IO, users are confined to the algorithms and policies of commercial Search Engines and Recommender Systems (RSs), which create results that also add to IO. this research calls to initiate a change in thinking: this by giving greater power to users when addressing the relevance and accuracy of internet searches, which helps in IO. However powerful search engines are, they do not process enough semantics in the moment when search queries are formulated. This research proposes a semantic selection of internet sources, through SWRL enabled OWL ontologies. the research focuses on SWT and its Stack because they (a)secure the semantic interpretation of the environments where internet searches take place and (b) guarantee reasoning that results in the selection of suitable internet sources in a particular moment of internet searches. Therefore, it is important to model the behaviour of users through OWL concepts and reason upon them in order to address IO when searching the internet. Thus, user behaviour is itemized through user preferences, perceptions and expectations from internet searches. The proposed approach in this research is a Software Engineering (SE) solution which provides computations based on the semantics of the environment stored in the ontological model

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    corecore