70,542 research outputs found

    Neural computations underlying action-based decision making in the human brain

    Get PDF
    Action-based decision making involves choices between different physical actions to obtain rewards. To make such decisions the brain needs to assign a value to each action and then compare them to make a choice. Using fMRI in human subjects, we found evidence for action-value signals in supplementary motor cortex. Separate brain regions, most prominently ventromedial prefrontal cortex, were involved in encoding the expected value of the action that was ultimately taken. These findings differentiate two main forms of value signals in the human brain: those relating to the value of each available action, likely reflecting signals that are a precursor of choice, and those corresponding to the expected value of the action that is subsequently chosen, and therefore reflecting the consequence of the decision process. Furthermore, we also found signals in the dorsomedial frontal cortex that resemble the output of a decision comparator, which implicates this region in the computation of the decision itself

    An automatic visual analysis system for tennis

    Get PDF
    This article presents a novel video analysis system for coaching tennis players of all levels, which uses computer vision algorithms to automatically edit and index tennis videos into meaningful annotations. Existing tennis coaching software lacks the ability to automatically index a tennis match into key events, and therefore, a coach who uses existing software is burdened with time-consuming manual video editing. This work aims to explore the effectiveness of a system to automatically detect tennis events. A secondary aim of this work is to explore the bene- fits coaches experience in using an event retrieval system to retrieve the automatically indexed events. It was found that automatic event detection can significantly improve the experience of using video feedback as part of an instructional coaching session. In addition to the automatic detection of key tennis events, player and ball movements are automati- cally tracked throughout an entire match and this wealth of data allows users to find interesting patterns in play. Player and ball movement information are integrated with the automatically detected tennis events, and coaches can query the data to retrieve relevant key points during a match or analyse player patterns that need attention. This coaching software system allows coaches to build advanced queries, which cannot be facilitated with existing video coaching solutions, without tedious manual indexing. This article proves that the event detection algorithms in this work can detect the main events in tennis with an average precision and recall of 0.84 and 0.86, respectively, and can typically eliminate man- ual indexing of key tennis events

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Object Detection Through Exploration With A Foveated Visual Field

    Get PDF
    We present a foveated object detector (FOD) as a biologically-inspired alternative to the sliding window (SW) approach which is the dominant method of search in computer vision object detection. Similar to the human visual system, the FOD has higher resolution at the fovea and lower resolution at the visual periphery. Consequently, more computational resources are allocated at the fovea and relatively fewer at the periphery. The FOD processes the entire scene, uses retino-specific object detection classifiers to guide eye movements, aligns its fovea with regions of interest in the input image and integrates observations across multiple fixations. Our approach combines modern object detectors from computer vision with a recent model of peripheral pooling regions found at the V1 layer of the human visual system. We assessed various eye movement strategies on the PASCAL VOC 2007 dataset and show that the FOD performs on par with the SW detector while bringing significant computational cost savings.Comment: An extended version of this manuscript was published in PLOS Computational Biology (October 2017) at https://doi.org/10.1371/journal.pcbi.100574

    Adaptive cancelation of self-generated sensory signals in a whisking robot

    Get PDF
    Sensory signals are often caused by one's own active movements. This raises a problem of discriminating between self-generated sensory signals and signals generated by the external world. Such discrimination is of general importance for robotic systems, where operational robustness is dependent on the correct interpretation of sensory signals. Here, we investigate this problem in the context of a whiskered robot. The whisker sensory signal comprises two components: one due to contact with an object (externally generated) and another due to active movement of the whisker (self-generated). We propose a solution to this discrimination problem based on adaptive noise cancelation, where the robot learns to predict the sensory consequences of its own movements using an adaptive filter. The filter inputs (copy of motor commands) are transformed by Laguerre functions instead of the often-used tapped-delay line, which reduces model order and, therefore, computational complexity. Results from a contact-detection task demonstrate that false positives are significantly reduced using the proposed scheme

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption
    corecore