9,645 research outputs found

    Candidate sentence selection for language learning exercises: from a comprehensive framework to an empirical evaluation

    Full text link
    We present a framework and its implementation relying on Natural Language Processing methods, which aims at the identification of exercise item candidates from corpora. The hybrid system combining heuristics and machine learning methods includes a number of relevant selection criteria. We focus on two fundamental aspects: linguistic complexity and the dependence of the extracted sentences on their original context. Previous work on exercise generation addressed these two criteria only to a limited extent, and a refined overall candidate sentence selection framework appears also to be lacking. In addition to a detailed description of the system, we present the results of an empirical evaluation conducted with language teachers and learners which indicate the usefulness of the system for educational purposes. We have integrated our system into a freely available online learning platform.Comment: To appear in Traitement Automatique des Langues (TAL) Journal, Special issue on NLP for Learning and Teachin

    Predicting the Relative Difficulty of Single Sentences With and Without Surrounding Context

    Full text link
    The problem of accurately predicting relative reading difficulty across a set of sentences arises in a number of important natural language applications, such as finding and curating effective usage examples for intelligent language tutoring systems. Yet while significant research has explored document- and passage-level reading difficulty, the special challenges involved in assessing aspects of readability for single sentences have received much less attention, particularly when considering the role of surrounding passages. We introduce and evaluate a novel approach for estimating the relative reading difficulty of a set of sentences, with and without surrounding context. Using different sets of lexical and grammatical features, we explore models for predicting pairwise relative difficulty using logistic regression, and examine rankings generated by aggregating pairwise difficulty labels using a Bayesian rating system to form a final ranking. We also compare rankings derived for sentences assessed with and without context, and find that contextual features can help predict differences in relative difficulty judgments across these two conditions.Comment: EMNLP 2016 Long Pape

    Text Analysis in Adversarial Settings: Does Deception Leave a Stylistic Trace?

    Full text link
    Textual deception constitutes a major problem for online security. Many studies have argued that deceptiveness leaves traces in writing style, which could be detected using text classification techniques. By conducting an extensive literature review of existing empirical work, we demonstrate that while certain linguistic features have been indicative of deception in certain corpora, they fail to generalize across divergent semantic domains. We suggest that deceptiveness as such leaves no content-invariant stylistic trace, and textual similarity measures provide superior means of classifying texts as potentially deceptive. Additionally, we discuss forms of deception beyond semantic content, focusing on hiding author identity by writing style obfuscation. Surveying the literature on both author identification and obfuscation techniques, we conclude that current style transformation methods fail to achieve reliable obfuscation while simultaneously ensuring semantic faithfulness to the original text. We propose that future work in style transformation should pay particular attention to disallowing semantically drastic changes.Comment: 35 pages To appear in ACM Computing Surveys (CSUR

    Clinically Accurate Chest X-Ray Report Generation

    Full text link
    The automatic generation of radiology reports given medical radiographs has significant potential to operationally and improve clinical patient care. A number of prior works have focused on this problem, employing advanced methods from computer vision and natural language generation to produce readable reports. However, these works often fail to account for the particular nuances of the radiology domain, and, in particular, the critical importance of clinical accuracy in the resulting generated reports. In this work, we present a domain-aware automatic chest X-ray radiology report generation system which first predicts what topics will be discussed in the report, then conditionally generates sentences corresponding to these topics. The resulting system is fine-tuned using reinforcement learning, considering both readability and clinical accuracy, as assessed by the proposed Clinically Coherent Reward. We verify this system on two datasets, Open-I and MIMIC-CXR, and demonstrate that our model offers marked improvements on both language generation metrics and CheXpert assessed accuracy over a variety of competitive baselines

    SnapToGrid: From Statistical to Interpretable Models for Biomedical Information Extraction

    Full text link
    We propose an approach for biomedical information extraction that marries the advantages of machine learning models, e.g., learning directly from data, with the benefits of rule-based approaches, e.g., interpretability. Our approach starts by training a feature-based statistical model, then converts this model to a rule-based variant by converting its features to rules, and "snapping to grid" the feature weights to discrete votes. In doing so, our proposal takes advantage of the large body of work in machine learning, but it produces an interpretable model, which can be directly edited by experts. We evaluate our approach on the BioNLP 2009 event extraction task. Our results show that there is a small performance penalty when converting the statistical model to rules, but the gain in interpretability compensates for that: with minimal effort, human experts improve this model to have similar performance to the statistical model that served as starting point

    Dynamic Multi-Level Multi-Task Learning for Sentence Simplification

    Full text link
    Sentence simplification aims to improve readability and understandability, based on several operations such as splitting, deletion, and paraphrasing. However, a valid simplified sentence should also be logically entailed by its input sentence. In this work, we first present a strong pointer-copy mechanism based sequence-to-sequence sentence simplification model, and then improve its entailment and paraphrasing capabilities via multi-task learning with related auxiliary tasks of entailment and paraphrase generation. Moreover, we propose a novel 'multi-level' layered soft sharing approach where each auxiliary task shares different (higher versus lower) level layers of the sentence simplification model, depending on the task's semantic versus lexico-syntactic nature. We also introduce a novel multi-armed bandit based training approach that dynamically learns how to effectively switch across tasks during multi-task learning. Experiments on multiple popular datasets demonstrate that our model outperforms competitive simplification systems in SARI and FKGL automatic metrics, and human evaluation. Further, we present several ablation analyses on alternative layer sharing methods, soft versus hard sharing, dynamic multi-armed bandit sampling approaches, and our model's learned entailment and paraphrasing skills.Comment: COLING 2018 (15 pages

    A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification

    Full text link
    Current lexical simplification approaches rely heavily on heuristics and corpus level features that do not always align with human judgment. We create a human-rated word-complexity lexicon of 15,000 English words and propose a novel neural readability ranking model with a Gaussian-based feature vectorization layer that utilizes these human ratings to measure the complexity of any given word or phrase. Our model performs better than the state-of-the-art systems for different lexical simplification tasks and evaluation datasets. Additionally, we also produce SimplePPDB++, a lexical resource of over 10 million simplifying paraphrase rules, by applying our model to the Paraphrase Database (PPDB).Comment: 12 pages; EMNLP 201

    Fake News Early Detection: An Interdisciplinary Study

    Full text link
    Massive dissemination of fake news and its potential to erode democracy has increased the demand for accurate fake news detection. Recent advancements in this area have proposed novel techniques that aim to detect fake news by exploring how it propagates on social networks. Nevertheless, to detect fake news at an early stage, i.e., when it is published on a news outlet but not yet spread on social media, one cannot rely on news propagation information as it does not exist. Hence, there is a strong need to develop approaches that can detect fake news by focusing on news content. In this paper, a theory-driven model is proposed for fake news detection. The method investigates news content at various levels: lexicon-level, syntax-level, semantic-level and discourse-level. We represent news at each level, relying on well-established theories in social and forensic psychology. Fake news detection is then conducted within a supervised machine learning framework. As an interdisciplinary research, our work explores potential fake news patterns, enhances the interpretability in fake news feature engineering, and studies the relationships among fake news, deception/disinformation, and clickbaits. Experiments conducted on two real-world datasets indicate the proposed method can outperform the state-of-the-art and enable fake news early detection when there is limited content information.Comment: 25 page

    Deep-speare: A Joint Neural Model of Poetic Language, Meter and Rhyme

    Full text link
    In this paper, we propose a joint architecture that captures language, rhyme and meter for sonnet modelling. We assess the quality of generated poems using crowd and expert judgements. The stress and rhyme models perform very well, as generated poems are largely indistinguishable from human-written poems. Expert evaluation, however, reveals that a vanilla language model captures meter implicitly, and that machine-generated poems still underperform in terms of readability and emotion. Our research shows the importance expert evaluation for poetry generation, and that future research should look beyond rhyme/meter and focus on poetic language.Comment: 11 pages; ACL201

    Catching Attention with Automatic Pull Quote Selection

    Full text link
    Pull quotes are an effective component of a captivating news article. These spans of text are selected from an article and provided with more salient presentation, with the aim of attracting readers with intriguing phrases and making the article more visually interesting. In this paper, we introduce the novel task of automatic pull quote selection, construct a dataset, and benchmark the performance of a number of approaches ranging from hand-crafted features to state-of-the-art sentence embeddings to cross-task models. We show that pre-trained Sentence-BERT embeddings outperform all other approaches, however the benefit over n-gram models is marginal. By closely examining the results of simple models, we also uncover many unexpected properties of pull quotes that should serve as inspiration for future approaches. We believe the benefits of exploring this problem further are clear: pull quotes have been found to increase enjoyment and readability, shape reader perceptions, and facilitate learning.Comment: 14 pages (11 + 3 for refs), 3 figures, 6 table
    corecore