8,820 research outputs found

    A relative tolerance relation of rough set in incomplete information

    Get PDF
    University is an educational institution that has objectives to increase student retention and also to make sure students graduate on time. Student learning performance can be predicted using data mining techniques e.g. the application of finding essential association rules on student learning base on demographic data by the university in order to achieve these objectives. However, the complete data i.e. the dataset without missing values to generate interesting rules for the detection system, is the key requirement for any mining technique. Furthermore, it is problematic to capture complete information from the nature of student data, due to high computational time to scan the datasets. To overcome these problems, this paper introduces a relative tolerance relation of rough set (RTRS). The novelty of RTRS is that, unlike previous rough set approaches that use tolerance relation, non-symmetric similarity relation, and limited tolerance relation, it is based on limited tolerance relation by taking account into consideration the relatively precision between two objects and therefore this is the first work that uses relatively precision. Moreover, this paper presents the mathematical properties of the RTRS approach and compares the performance and the existing approaches by using real-world student dataset for classifying university’s student performance. The results show that the proposed approach outperformed the existing approaches in terms of computational time and accuracy

    A Noise-tolerant Approach to Fuzzy-Rough Feature Selection

    Get PDF
    In rough set based feature selection, the goal is to omit attributes (features) from decision systems such that objects in different decision classes can still be discerned. A popular way to evaluate attribute subsets with respect to this criterion is based on the notion of dependency degree. In the standard approach, attributes are expected to be qualitative; in the presence of quantitative attributes, the methodology can be generalized using fuzzy rough sets, to handle gradual (in)discernibility between attribute values more naturally. However, both the extended approach, as well as its crisp counterpart, exhibit a strong sensitivity to noise: a change in a single object may significantly influence the outcome of the reduction procedure. Therefore, in this paper, we consider a more flexible methodology based on the recently introduced Vaguely Quantified Rough Set (VQRS) model. The method can handle both crisp (discrete-valued) and fuzzy (real-valued) data, and encapsulates the existing noise-tolerant data reduction approach using Variable Precision Rough Sets (VPRS), as well as the traditional rough set model, as special cases
    corecore