11,010 research outputs found

    Modeling perceptual categories of parametric musical systems

    Get PDF
    In computer music fields, such as algorithmic composition and live coding, the aural exploration of parameter combinations is the process through which systems’ capabilities are learned and the material for different musical tasks is selected and classified. Despite its importance, few models of this process have been proposed. Here, a rule extraction algorithm is presented. It works with data obtained during a user auditory exploration of parameters, in which specific perceptual categories are searched. The extracted rules express complex, but general relationships, among parameter values and categories. Its formation is controlled by functions that govern the data grouping. These are given by the user through heuristic considerations. The rules are used to build two more general models: a set of “extended or Inference Rules” and a fuzzy classifier which allow the user to infer unheard combinations of parameters consistent with the preselected categories from the extended rules and between the limits of the explored parameter space, respectively. To evaluate the models, user tests were performed. The constructed models allow to reduce complexity in operating the systems, by providing a set of “presets” for different categories, and extend compositional capacities through the inferred combinations, alongside a structured representation of the information.Peer ReviewedPostprint (author's final draft

    Charting perceptual spaces with fuzzy rules

    Get PDF
    Algorithmic music nowadays performs domain specific tasks for which classical algorithms do not offer optimal solutions or require user's expertise. Among these tasks is the extraction of models from data that offer an understanding of the underlying behavior, providing a quick and easy to use way to explore the data for first (sometimes on-the-fly) insights. Learning rules from examples is an approach often used to achieve this goal. However, together with the aforementioned requirements algorithmic composition needs to create new material so that it is perceived as consistent with the material of the data. In addition, the input data sets are usually small because the human is the bottleneck when generating them. In this contribution we present a fuzzy rule induction algorithm focused on generalizing a set of data, complying with the previous requirements, that offers good results for small data sets. For its evaluation -in a field where there are no benchmarks available - data sets obtained during user tests were used. The visual representation offered by the fuzzy chart helps to reduce the cognitive complexity of the devices used in algorithmic music. The results obtained show that this approach is promising for future developments.Peer ReviewedPostprint (author's final draft

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    A Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to Knowledge Acquisition

    Get PDF
    Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to knowledge acquisition is proposed in this paper as a viable solution to the challenges of rule-based unwieldiness and sharp boundary problem in building a fuzzy rule-based expert system. The fuzzy models were based on domain experts’ opinion about the data description. The proposed approach is committed to modelling of a compact Fuzzy Rule-Based Expert Systems. It is also aimed at providing a platform for instant update of the knowledge-base in case new knowledge is discovered. The insight to the new approach strategies and underlining assumptions, the structure of FARME-D and its practical application in medical domain was discussed. Also, the modalities for the validation of the FARME-D approach were discussed

    Data mining in soft computing framework: a survey

    Get PDF
    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included
    corecore