52,940 research outputs found

    Managing contextual information in semantically-driven temporal information systems

    Get PDF
    Context-aware (CA) systems have demonstrated the provision of a robust solution for personalized information delivery in the current content-rich and dynamic information age we live in. They allow software agents to autonomously interact with users by modeling the user’s environment (e.g. profile, location, relevant public information etc.) as dynamically-evolving and interoperable contexts. There is a flurry of research activities in a wide spectrum at context-aware research areas such as managing the user’s profile, context acquisition from external environments, context storage, context representation and interpretation, context service delivery and matching of context attributes to users‘ queries etc. We propose SDCAS, a Semantic-Driven Context Aware System that facilitates public services recommendation to users at temporal location. This paper focuses on information management and service recommendation using semantic technologies, taking into account the challenges of relationship complexity in temporal and contextual information

    Representing Dataset Quality Metadata using Multi-Dimensional Views

    Full text link
    Data quality is commonly defined as fitness for use. The problem of identifying quality of data is faced by many data consumers. Data publishers often do not have the means to identify quality problems in their data. To make the task for both stakeholders easier, we have developed the Dataset Quality Ontology (daQ). daQ is a core vocabulary for representing the results of quality benchmarking of a linked dataset. It represents quality metadata as multi-dimensional and statistical observations using the Data Cube vocabulary. Quality metadata are organised as a self-contained graph, which can, e.g., be embedded into linked open datasets. We discuss the design considerations, give examples for extending daQ by custom quality metrics, and present use cases such as analysing data versions, browsing datasets by quality, and link identification. We finally discuss how data cube visualisation tools enable data publishers and consumers to analyse better the quality of their data.Comment: Preprint of a paper submitted to the forthcoming SEMANTiCS 2014, 4-5 September 2014, Leipzig, German

    Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes

    Get PDF
    The application of emerging technologies of Internet of Things (IoT) and cloud computing have increasing the popularity of smart homes, along with which, large volumes of heterogeneous data have been generating by home entities. The representation, management and application of the continuously increasing amounts of heterogeneous data in the smart home data space have been critical challenges to the further development of smart home industry. To this end, a scheme for ontology-based data semantic management and application is proposed in this paper. Based on a smart home system model abstracted from the perspective of implementing users’ household operations, a general domain ontology model is designed by defining the correlative concepts, and a logical data semantic fusion model is designed accordingly. Subsequently, to achieve high-efficiency ontology data query and update in the implementation of the data semantic fusion model, a relational-database-based ontology data decomposition storage method is developed by thoroughly investigating existing storage modes, and the performance is demonstrated using a group of elaborated ontology data query and update operations. Comprehensively utilizing the stated achievements, ontology-based semantic reasoning with a specially designed semantic matching rule is studied as well in this work in an attempt to provide accurate and personalized home services, and the efficiency is demonstrated through experiments conducted on the developed testing system for user behavior reasoning

    BIM semantic-enrichment for built heritage representation

    Get PDF
    In the built heritage context, BIM has shown difficulties in representing and managing the large and complex knowledge related to non-geometrical aspects of the heritage. Within this scope, this paper focuses on a domain-specific semantic-enrichment of BIM methodology, aimed at fulfilling semantic representation requirements of built heritage through Semantic Web technologies. To develop this semantic-enriched BIM approach, this research relies on the integration of a BIM environment with a knowledge base created through information ontologies. The result is knowledge base system - and a prototypal platform - that enhances semantic representation capabilities of BIM application to architectural heritage processes. It solves the issue of knowledge formalization in cultural heritage informative models, favouring a deeper comprehension and interpretation of all the building aspects. Its open structure allows future research to customize, scale and adapt the knowledge base different typologies of artefacts and heritage activities

    Ontology modelling methodology for temporal and interdependent applications

    Get PDF
    The increasing adoption of Semantic Web technology by several classes of applications in recent years, has made ontology engineering a crucial part of application development. Nowadays, the abundant accessibility of interdependent information from multiple resources and representing various fields such as health, transport, and banking etc., further evidence the growing need for utilising ontology for the development of Web applications. While there have been several advances in the adoption of the ontology for application development, less emphasis is being made on the modelling methodologies for representing modern-day application that are characterised by the temporal nature of the data they process, which is captured from multiple sources. Taking into account the benefits of a methodology in the system development, we propose a novel methodology for modelling ontologies representing Context-Aware Temporal and Interdependent Systems (CATIS). CATIS is an ontology development methodology for modelling temporal interdependent applications in order to achieve the desired results when modelling sophisticated applications with temporal and inter dependent attributes to suit today's application requirements
    • 

    corecore