76 research outputs found

    A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conventional to Machine Learning Approaches

    Get PDF
    Wireless communication networks have been witnessing an unprecedented demand due to the increasing number of connected devices and emerging bandwidth-hungry applications. Albeit many competent technologies for capacity enhancement purposes, such as millimeter wave communications and network densification, there is still room and need for further capacity enhancement in wireless communication networks, especially for the cases of unusual people gatherings, such as sport competitions, musical concerts, etc. Unmanned aerial vehicles (UAVs) have been identified as one of the promising options to enhance the capacity due to their easy implementation, pop up fashion operation, and cost-effective nature. The main idea is to deploy base stations on UAVs and operate them as flying base stations, thereby bringing additional capacity to where it is needed. However, because the UAVs mostly have limited energy storage, their energy consumption must be optimized to increase flight time. In this survey, we investigate different energy optimization techniques with a top-level classification in terms of the optimization algorithm employed; conventional and machine learning (ML). Such classification helps understand the state of the art and the current trend in terms of methodology. In this regard, various optimization techniques are identified from the related literature, and they are presented under the above mentioned classes of employed optimization methods. In addition, for the purpose of completeness, we include a brief tutorial on the optimization methods and power supply and charging mechanisms of UAVs. Moreover, novel concepts, such as reflective intelligent surfaces and landing spot optimization, are also covered to capture the latest trend in the literature.Comment: 41 pages, 5 Figures, 6 Tables. Submitted to Open Journal of Communications Society (OJ-COMS

    Computational efficiency maximization for UAV-assisted MEC network with energy harvesting in disaster scenarios

    Get PDF
    Wireless networks are expected to provide unlimited connectivity to an increasing number of heterogeneous devices. Future wireless networks (sixth-generation (6G)) will accomplish this in three-dimensional (3D) space by combining terrestrial and aerial networks. However, effective resource optimization and standardization in future wireless networks are challenging because of massive resource-constrained devices, diverse quality-of-service (QoS) requirements, and a high density of heterogeneous devices. Recently, unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) networks are considered a potential candidate to provide effective and efficient solutions for disaster management in terms of disaster monitoring, forecasting, in-time response, and situation awareness. However, the limited size of end-user devices comes with the limitation of battery lives and computational capacities. Therefore, offloading, energy consumption and computational efficiency are significant challenges for uninterrupted communication in UAV-assisted MEC networks. In this thesis, we consider a UAV-assisted MEC network with energy harvesting (EH). To achieve this, we mathematically formulate a mixed integer non-linear programming problem to maximize the computational efficiency of UAV-assisted MEC networks with EH under disaster situations. A power splitting architecture splits the source power for communication and EH. We jointly optimize user association, the transmission power of UE, task offloading time, and UAV’s optimal location. To solve this optimization problem, we divide it into three stages. In the first stage, we adopt k-means clustering to determine the optimal locations of the UAVs. In the second stage, we determine user association. In the third stage, we determine the optimal power of UE and offloading time using the optimal UAV location from the first stage and the user association indicator from the second stage, followed by linearization and the use of interior-point method to solve the resulting linear optimization problem. Simulation results for offloading, no-offloading, offloading with EH, and no-offloading no-EH scenarios are presented with a varying number of UAVs and UEs. The results show the proposed EH solution’s effectiveness in offloading scenarios compared to no-offloading scenarios in terms of computational efficiency, bits computed, and energy consumptio

    Ruin Theory for User Association and Energy Optimization in Multi-access Edge Computing

    Full text link
    In this letter, a novel framework is proposed for analyzing data offloading in a multi-access edge computing system. Specifically, a two-phase algorithm, is proposed, including two key phases: \emph{1) user association phase} and \emph{2) task offloading phase}. In the first phase, a ruin theory-based approach is developed to obtain the users association considering the users' transmission reliability. Meanwhile, in the second phase, an optimization-based algorithm is used to optimize the data offloading process. In particular, ruin theory is used to manage the user association phase, and a ruin probability-based preference profile is considered to control the priority of proposing users. Here, ruin probability is derived by the surplus buffer space of each edge node at each time slot. Giving the association results, an optimization problem is formulated to optimize the amount of offloaded data aiming at minimizing the energy consumption of users. Simulation results show that the developed solutions guarantee system reliability under a tolerable value of surplus buffer size and minimize the total energy consumption of all users.Comment: This paper has been submitted to IEEE Wireless Communications Letter

    Blockchain-based distributive auction for relay-assisted secure communications

    Get PDF
    Physical layer security (PLS) is considered as a promising technique to prevent information eavesdropping in wireless systems. In this context, cooperative relaying has emerged as a robust solution for achieving PLS due to multipath diversity and relatively lower transmission power. However, relays or the relay operators in the practical environment are unwilling for service provisioning unless they are incentivized for their cost of services. Thus, it is required to jointly consider network economics and relay cooperation to improve system efficiency. In this paper, we consider the problem of joint network economics and PLS using cooperative relaying and jamming. Based on the double auction theory, we model the interaction between transmitters seeking for a particular level of secure transmission of information and relay operators for suitable relay and jammer assignment, in a multiple source-destination networks. In addition, theoretical analyses are presented to justify that the proposed auction mechanism satisfies the desirable economic properties of individual rationality, budget balance, and truthfulness. As the participants in the traditional centralized auction framework may take selfish actions or collude with each other, we propose a decentralized and trustless auction framework based on blockchain technology. In particular, we exploit the smart contract feature of blockchain to construct a completely autonomous framework, where all the participants are financially enforced by smart contract terms. The security properties of the proposed framework are also discussed

    Seven Defining Features of Terahertz (THz) Wireless Systems: A Fellowship of Communication and Sensing

    Full text link
    Wireless communication at the terahertz (THz) frequency bands (0.1-10THz) is viewed as one of the cornerstones of tomorrow's 6G wireless systems. Owing to the large amount of available bandwidth, THz frequencies can potentially provide wireless capacity performance gains and enable high-resolution sensing. However, operating a wireless system at the THz-band is limited by a highly uncertain channel. Effectively, these channel limitations lead to unreliable intermittent links as a result of a short communication range, and a high susceptibility to blockage and molecular absorption. Consequently, such impediments could disrupt the THz band's promise of high-rate communications and high-resolution sensing capabilities. In this context, this paper panoramically examines the steps needed to efficiently deploy and operate next-generation THz wireless systems that will synergistically support a fellowship of communication and sensing services. For this purpose, we first set the stage by describing the fundamentals of the THz frequency band. Based on these fundamentals, we characterize seven unique defining features of THz wireless systems: 1) Quasi-opticality of the band, 2) THz-tailored wireless architectures, 3) Synergy with lower frequency bands, 4) Joint sensing and communication systems, 5) PHY-layer procedures, 6) Spectrum access techniques, and 7) Real-time network optimization. These seven defining features allow us to shed light on how to re-engineer wireless systems as we know them today so as to make them ready to support THz bands. Furthermore, these features highlight how THz systems turn every communication challenge into a sensing opportunity. Ultimately, the goal of this article is to chart a forward-looking roadmap that exposes the necessary solutions and milestones for enabling THz frequencies to realize their potential as a game changer for next-generation wireless systems.Comment: 26 pages, 6 figure

    Reconfigurable Intelligent Surfaces Aided Multi-Cell NOMA Networks: A Stochastic Geometry Model

    Get PDF
    By activating blocked users and altering successive interference cancellation (SIC) sequences, reconfigurable intelligent surfaces (RISs) become promising for enhancing non-orthogonal multiple access (NOMA) systems. To evaluate the benefits between RISs and NOMA, a downlink RIS-aided multi-cell-NOMA network is investigated via stochastic geometry. We first introduce the unique path loss model for RIS reflecting channels. Then, we evaluate the angle distributions based on a Poisson cluster process (PCP) model, which theoretically demonstrates that the angles of incidence and reflection are uniformly distributed. Additionally, we derive closed-form analytical and asymptotic expressions for coverage probabilities of the paired NOMA users. Lastly, we derive the analytical expressions of the ergodic rate for both of the paired NOMA users and calculate the asymptotic expressions for the typical user. The analytical results indicate that 1) the achievable rates reach an upper limit when the length of RIS increases; 2) exploiting RISs can enhance the path loss intercept to improve the performance without influencing the bandwidth. The simulation results show that 1) RIS-aided networks have superior performance than the networks without RISs; and 2) the SIC order in NOMA systems can be altered since RISs are able to change the channel quality of NOMA users
    • …
    corecore