1,874 research outputs found

    Unconstrained salient object detection via proposal subset optimization

    Full text link
    We aim at detecting salient objects in unconstrained images. In unconstrained images, the number of salient objects (if any) varies from image to image, and is not given. We present a salient object detection system that directly outputs a compact set of detection windows, if any, for an input image. Our system leverages a Convolutional-Neural-Network model to generate location proposals of salient objects. Location proposals tend to be highly overlapping and noisy. Based on the Maximum a Posteriori principle, we propose a novel subset optimization framework to generate a compact set of detection windows out of noisy proposals. In experiments, we show that our subset optimization formulation greatly enhances the performance of our system, and our system attains 16-34% relative improvement in Average Precision compared with the state-of-the-art on three challenging salient object datasets.http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Unconstrained_Salient_Object_CVPR_2016_paper.htmlPublished versio

    A Novel Hybrid Dimensionality Reduction Method using Support Vector Machines and Independent Component Analysis

    Get PDF
    Due to the increasing demand for high dimensional data analysis from various applications such as electrocardiogram signal analysis and gene expression analysis for cancer detection, dimensionality reduction becomes a viable process to extracts essential information from data such that the high-dimensional data can be represented in a more condensed form with much lower dimensionality to both improve classification accuracy and reduce computational complexity. Conventional dimensionality reduction methods can be categorized into stand-alone and hybrid approaches. The stand-alone method utilizes a single criterion from either supervised or unsupervised perspective. On the other hand, the hybrid method integrates both criteria. Compared with a variety of stand-alone dimensionality reduction methods, the hybrid approach is promising as it takes advantage of both the supervised criterion for better classification accuracy and the unsupervised criterion for better data representation, simultaneously. However, several issues always exist that challenge the efficiency of the hybrid approach, including (1) the difficulty in finding a subspace that seamlessly integrates both criteria in a single hybrid framework, (2) the robustness of the performance regarding noisy data, and (3) nonlinear data representation capability. This dissertation presents a new hybrid dimensionality reduction method to seek projection through optimization of both structural risk (supervised criterion) from Support Vector Machine (SVM) and data independence (unsupervised criterion) from Independent Component Analysis (ICA). The projection from SVM directly contributes to classification performance improvement in a supervised perspective whereas maximum independence among features by ICA construct projection indirectly achieving classification accuracy improvement due to better intrinsic data representation in an unsupervised perspective. For linear dimensionality reduction model, I introduce orthogonality to interrelate both projections from SVM and ICA while redundancy removal process eliminates a part of the projection vectors from SVM, leading to more effective dimensionality reduction. The orthogonality-based linear hybrid dimensionality reduction method is extended to uncorrelatedness-based algorithm with nonlinear data representation capability. In the proposed approach, SVM and ICA are integrated into a single framework by the uncorrelated subspace based on kernel implementation. Experimental results show that the proposed approaches give higher classification performance with better robustness in relatively lower dimensions than conventional methods for high-dimensional datasets

    Reactive optimization of transmission and distribution networks

    Get PDF
    Some of the challenges associated with the multi-objective optimization on a modern power system were addressed in this work. Optimization of reactive resources was performed in order to simultaneously optimize several criteria: transmission losses, distribution losses, voltage stability, etc. The optimization was performed simultaneously on the entire power system; transmission and distribution subsystems included. The inherent physical complexity of modeling together transmission and distribution systems was considered first. After considering all pros and cons for such a task, a model of the entire power system was successfully developed. The inherent mathematical complexity of high-dimensional optimization space was handled by introducing the decoupling principle. System is first decoupled in several independent models and optimizations were performed on each part of the system. An algorithm is developed that properly combines the independent solutions to reach the overall system optima. The principle of algorithm synthesis is used to reduce the size of the solution space. Deterministic algorithms are used to locate the local optima which are subsequently refined by probabilistic algorithm. The algorithm is applied on a "real-life" test system and it is shown that the obtained solutions outperform the solution obtained with the conventional algorithms.Ph.D.Committee Chair: Begovic, Miroslav; Committee Member: Divan, Deepakraj; Committee Member: Dorsey, John; Committee Member: Ferri, Bonnie; Committee Member: Lambert, Fran

    Applications Of Machine Learning In Biology And Medicine

    Get PDF
    Machine learning as a field is defined to be the set of computational algorithms that improve their performance by assimilating data. As such, the field as a whole has found applications in many diverse disciplines from robotics and communication in engineering to economics and finance, and also biology and medicine. It should not come as a surprise that many popular methods in use today have completely different origins. Despite this heterogeneity, different methods can be divided into standard tasks, such as supervised, unsupervised, semi-supervised and reinforcement learning. Although machine learning as a field can be formalized as methods trying to solve certain standard tasks, applying these tasks on datasets from different fields comes with certain caveats, and sometimes is fraught with challenges. In this thesis, we develop general procedures and novel solutions, dealing with practical problems that arise when modeling biological and medical data. Cost sensitive learning is an important area of research in machine learning which addresses the widespread and practical problem of dealing with different costs during the learning and deployment of classification algorithms. In many applications such as credit fraud detection, network intrusion and specifically medical diagnosis domains, prior class distributions are highly skewed, which makes the training examples very much unbalanced. Combining this with uneven misclassification costs renders standard machine learning approaches useless in learning an acceptable decision function. We experimentally show the benefits and shortcomings of various methods that convert cost blind learning algorithms to cost sensitive ones. Using the results and best practices found for cost sensitive learning, we design and develop a machine learning approach to ontology mapping. Next, we present a novel approach to deal with uncertainty in classification when costs are unknown or otherwise hard to assign. Support Vector Machines (SVM) are considered to be among the most successful approaches for classification. However prediction of instances near the decision boundary depends more on the specific parameter selection or noise in data, rather than a clear difference in features. In many applications such as medical diagnosis, these regions should be labeled as uncertain rather than assigned to any particular class. Furthermore, instances may belong to novel disease subtypes that are not from any previously known class. In such applications, declining to make a prediction could be beneficial when more powerful but expensive tests are available. We develop a novel approach for optimal selection of the threshold and show its successful application on three biological and medical datasets. The last part of this thesis provides novel solutions for handling high dimensional data. Although high-dimensional data is ubiquitously found in many disciplines, current life science research almost always involves high-dimensional genomics/proteomics data. The ``omics\u27\u27 data provide a wealth of information and have changed the research landscape in biology and medicine. However, these data are plagued with noise, redundancy and collinearity, which makes the discovery process very difficult and costly. Any method that can accurately detect irrelevant and noisy variables in omics data would be highly valuable. We present Robust Feature Selection (RFS), a randomized feature selection approach dedicated to low-sample high-dimensional data. RFS combines an embedded feature selection method with a randomization procedure for stability. Recent advances in sparse recovery and estimation methods have provided efficient and asymptotically consistent feature selection algorithms. However, these methods lack finite sample error control due to instability. Furthermore, the chances of correct recovery diminish with more collinearity among features. To overcome these difficulties, RFS uses a randomization procedure to provide an accurate and stable feature selection method. We thoroughly evaluate RFS by comparing it to a number of popular univariate and multivariate feature selection methods and show marked prediction accuracy improvement of a diagnostic signature, while preserving a good stability
    • …
    corecore